Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular design framework

Jia Wen Chong , Suchithra Thangalazhy-Gopakumar , Kasturi Muthoosamy , Nishanth G. Chemmangattuvalappil

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (2) : 168 -182.

PDF (918KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (2) : 168 -182. DOI: 10.1007/s11705-021-2056-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular design framework

Author information +
History +
PDF (918KB)

Abstract

Direct application of bio-oil from fast pyrolysis as a fuel has remained a challenge due to its undesirable attributes such as low heating value, high viscosity, high corrosiveness and storage instability. Solvent addition is a simple method for circumventing these disadvantages to allow further processing and storage. In this work, computer-aided molecular design tools were developed to design optimal solvents to upgrade bio-oil whilst having low environmental impact. Firstly, target solvent requirements were translated into measurable physical properties. As different property prediction models consist different levels of structural information, molecular signature descriptor was used as a common platform to formulate the design problem. Because of the differences in the required structural information of different property prediction models, signatures of different heights were needed in formulating the design problem. Due to the combinatorial nature of higher-order signatures, the complexity of a computer-aided molecular design problem increases with the height of signatures. Thus, a multi-stage framework was developed by developing consistency rules that restrict the number of higher-order signatures. Finally, phase stability analysis was conducted to evaluate the stability of the solvent-oil blend. As a result, optimal solvents that improve the solvent-oil blend properties while displaying low environmental impact were identified.

Graphical abstract

Keywords

computer-aided molecular design / bio-oil additives / molecular signature descriptor

Cite this article

Download citation ▾
Jia Wen Chong, Suchithra Thangalazhy-Gopakumar, Kasturi Muthoosamy, Nishanth G. Chemmangattuvalappil. Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular design framework. Front. Chem. Sci. Eng., 2022, 16(2): 168-182 DOI:10.1007/s11705-021-2056-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee S Y, Sankaran R, Chew K W, Tan C H, Krishnamoorthy R, Chu D T, Show P L. Waste to bioenergy: a review on the recent conversion technologies. BMC Energy, 2019, 1(4): 1–22

[2]

Lewandowski W M, Ryms M, Kosakowski W. Thermal biomass conversion: a review. Processes, 2020, 8(5): 516

[3]

Fermoso J, Pizarro P, Coronado J M, Serrano D P. Advanced biofuels production by upgrading of pyrolysis bio-oil. Wiley Interdisciplinary Reviews. Energy and Environment, 2017, 6(4): 1–18

[4]

Khosravanipour Mostafazadeh A, Solomatnikova O, Drogui P, Tyagi R D. A review of recent research and developments in fast pyrolysis and bio-oil upgrading. Biomass Conversion and Biorefinery, 2018, 8(3): 739–773

[5]

Yang H, Yao J, Chen G, Ma W, Yan B, Qi Y. Overview of upgrading of pyrolysis oil of biomass. Energy Procedia, 2014, 61: 1306–1309

[6]

Zhang S, Yang X, Zhang H, Chu C, Zheng K, Ju M, Liu L. Liquefaction of biomass and upgrading of bio-oil: a review. Molecules, 2019, 24(2250): 1–30

[7]

Lian X, Xue Y, Zhao Z, Xu G, Han S, Yu H. Progress on upgrading methods of bio-oil: a review. International Journal of Energy Research, 2017, 41(13): 1798–1816

[8]

Venkatasubramanian V, Chan K, Caruthers J M. Computer-aided molecular design using genetic algorithms. Computers & Chemical Engineering, 1994, 18(9): 833–844

[9]

Gani R, Achenie L E K, Venkatasubramanian V. Chapter 1—Introduction to CAMD. Computer-Aided Chemical Engineering, 2003, 12: 3–21

[10]

Papadopoulos A I, Tsivintzelis I, Linke P, Seferlis P. Computer-aided molecular design: fundamentals, methods, and applications. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2018, 4–36

[11]

Austin N D, Sahinidis N V, Trahan D W. Computer-aided molecular design: an introduction and review of tools, applications, and solution techniques. Chemical Engineering Research & Design, 2016, 116: 2–26

[12]

Ng L Y, Chong F K, Chemmangattuvalappil N G. Challenges and opportunities in computer-aided molecular design. Computers & Chemical Engineering, 2015, 81: 115–129

[13]

Zhou T, McBride K, Linke S, Song Z, Sundmacher K. Computer-aided solvent selection and design for efficient chemical processes. Current Opinion in Chemical Engineering, 2020, 27: 35–44

[14]

Chemmangattuvalappil N G. Development of solvent design methodologies using computer-aided molecular design tools. Current Opinion in Chemical Engineering, 2020, 27: 51–59

[15]

Hada S, Solvason C C, Eden M R. Characterization-based molecular design of bio-fuel additives using chemometric and property clustering techniques. Frontiers in Energy Research, 2014, 2(20): 1–12

[16]

Khor S Y, Liam K Y, Loh W X, Tan C Y, Ng L Y, Hassim M H, Ng D K W, Chemmangattuvalappil N G. Computer aided molecular design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Safety and Environmental Protection, 2017, 106: 211–223

[17]

Yunus N A, Zaki N M, Wan Alwi S R. Design of solvents for palm oil recovery using computer aided approach. Chemical Engineering Transactions, 2018, 63: 583–588

[18]

Mah A X Y, Chin H H, Neoh J Q, Aboagwa O A, Thangalazhy-Gopakumar S, Chemmangattuvalappil N G. Design of bio-oil additives via computer-aided molecular design tools and phase stability analysis on final blends. Computers & Chemical Engineering, 2019, 123: 257–271

[19]

Byrne F P, Jin S, Paggiola G, Petchey T H M, Clark J H, Farmer T J, Hunt A J, McElroy C R, Sherwood J. Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 2016, 4(7): 1–24

[20]

Neoh J Q, Chin H H, Mah A X Y, Aboagwa O A, Thangalazhy-Gopakumar S, Chemmangattuvalappil N G. Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 2019, 19: 53–63

[21]

Dimian A C, Bildea C S, Kiss A A. Chapter 12—Chemical Product Design. Computer-Aided Chemical Engineering, 2014, 35: 489–523

[22]

Chemmangattuvalappil N G, Eden M R. A novel methodology for property-based molecular design using multiple topological indices. Industrial & Engineering Chemistry Research, 2013, 52(22): 7090–7103

[23]

Visco D P Jr, Pophale R S, Rintoul M D, Faulon J L. Developing a methodology for an inverse quantitative structure-activity relationship using the signature molecular descriptor. Journal of Molecular Graphics & Modelling, 2002, 20(6): 429–438

[24]

Faulon J L, Visco D P, Pophale R S. The signature molecular descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. Journal of Chemical Information and Computer Sciences, 2003, 43(3): 707–720

[25]

Visco D P Jr, Chen J J. The signature molecular descriptor in molecular design: past and current applications. Computer-Aided Chemical Engineering, 2016, 39: 315–343

[26]

Brown W M, Martin S, Rintoul M D, Faulon J L. Designing novel polymers with targeted properties using the signature molecular descriptor. Journal of Chemical Information and Modeling, 2006, 46(2): 826–835

[27]

Jackson J D, Weis D C, Visco D P Jr. Potential glucocorticoid receptor ligands with pulmonary selectivity using I-QSAR with the signature molecular descriptor. Chemical Biology & Drug Design, 2008, 72(6): 540–550

[28]

Weis D C, Visco D P. Computer-aided molecular design using the signature molecular descriptor: application to solvent selection. Computers & Chemical Engineering, 2010, 34(7): 1018–1029

[29]

Chemmangattuvalappil N G, Solvason C C, Bommareddy S, Eden M R. Reverse problem formulation approach to molecular design using property operators based on signature descriptors. Computers & Chemical Engineering, 2010, 34(12): 2062–2071

[30]

Ng L Y, Andiappan V, Chemmangattuvalappil N G, Ng D K S. A systematic methodology for optimal mixture design in an integrated biorefinery. Computers & Chemical Engineering, 2015, 81: 288–309

[31]

Marrero J, Gani R. Group-contribution based estimation of pure component properties. Fluid Phase Equilibria, 2001, 183-184: 183–208

[32]

Conte E, Martinho A, Matos H A, Gani R. Combined group-contribution and atom connectivity index-based methods for estimation of surface tension and viscosity. Industrial & Engineering Chemistry Research, 2008, 47(20): 7940–7954

[33]

Hukkerikar A S, Kalakul S, Sarup B, Young D M, Sin G, Gani R. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis. Journal of Chemical Information and Modeling, 2012, 52(11): 2823–2839

[34]

Zhang L, Cignitti S, Gani R. Generic mathematical programming formulation and solution for computer-aided molecular design. Computers & Chemical Engineering, 2015, 78: 79–84

[35]

Gani R, Nielsen B, Fredenslund A. A group contribution approach to computer-aided molecular design. AIChE Journal. American Institute of Chemical Engineers, 1991, 37(9): 1318–1332

[36]

van Dyk B, Nieuwoudt I. A computer-aided molecular design of solvents for distillation processes. In: International Conference on Distillation and Absorption. Düsseldorf: Verein Deutscher Ingenieure e.V. (VDI), 2002,1

[37]

Faulon J L, Churchwell C J, Visco D P. The signature molecular descriptor 2 enumerating molecules from their extended valence sequences. Journal of Chemical Information and Computer Sciences, 2003, 43(3): 721–734

[38]

Prausnitz J M, Lichtenthaler R N, Azevedo E G. Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd ed. Upper Saddle River: Prentice-Hall, 1999, 687–696

[39]

Pacheco R, Silva C. Global warming potential of biomass-to-ethanol: review and sensitivity analysis through a case study. Energies, 2019, 12(13): 2535

[40]

Ooi J, Ng D K S, Chemmangattuvalappil N G. Optimal molecular design towards an environmental friendly solvent recovery process. Computers & Chemical Engineering, 2018, 117: 391–409

[41]

Linstrom P J, Mallard W G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg MD: National Institute of Standards and Technology, 2021

[42]

Manara P, Bezergianni S, Pfisterer U. Study on phase behavior and properties of binary blends of bio-oil/fossil-based refinery intermediates: a step toward bio-oil refinery integration. Energy Conversion and Management, 2018, 165: 304–315

[43]

Asadullah M, Ab Rasid N S, Kadir S A S A, Azdarpour A. Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and Bioenergy, 2013, 59: 316–324

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (918KB)

Supplementary files

FCE-20112-OF-CJ_suppl_1

5766

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/