Crown ether-thiourea conjugates as ion transporters

Zhixing Zhao, Bailing Tang, Xiaosheng Yan, Xin Wu, Zhao Li, Philip A. Gale, Yun-Bao Jiang

PDF(3896 KB)
PDF(3896 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (1) : 81-91. DOI: 10.1007/s11705-021-2049-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Crown ether-thiourea conjugates as ion transporters

Author information +
History +

Abstract

Na+, Cl and K+ are the most abundant electrolytes present in biological fluids that are essential to the regulation of pH homeostasis, membrane potential and cell volume in living organisms. Herein, we report synthetic crown ether-thiourea conjugates as a cation/anion symporter, which can transport both Na+ and Cl across lipid bilayers with relatively high transport activity. Surprisingly, the ion transport activities were diminished when high concentrations of K+ ions were present outside the vesicles. This unusual behavior resulted from the strong affinity of the transporters for K+ ions, which led to predominant partitioning of the transporters as the K+ complexes in the aqueous phase preventing the transporter incorporation into the membrane. Synthetic membrane transporters with Na+, Cl and K+ transport capabilities may have potential biological and medicinal applications.

Graphical abstract

Keywords

ion transport / thiourea / crown ether / symport

Cite this article

Download citation ▾
Zhixing Zhao, Bailing Tang, Xiaosheng Yan, Xin Wu, Zhao Li, Philip A. Gale, Yun-Bao Jiang. Crown ether-thiourea conjugates as ion transporters. Front. Chem. Sci. Eng., 2022, 16(1): 81‒91 https://doi.org/10.1007/s11705-021-2049-7

References

[1]
Wu X, Howe E N W, Gale P A. Supramolecular transmembrane anion transport: new assays and insights. Accounts of Chemical Research, 2018, 51(8): 1870–1879
CrossRef Google scholar
[2]
Fyles T M. How do amphiphiles form ion-conducting channels in membranes. Lessons from linear oligoesters. Accounts of Chemical Research, 2013, 46(12): 2847–2855
CrossRef Google scholar
[3]
Davis A P, Sheppard D N, Smith B D. Development of synthetic membrane transporters for anions. Chemical Society Reviews, 2007, 36(2): 348–357
CrossRef Google scholar
[4]
Zhang Z, Chen J. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell, 2016, 167(6): 1586–1597
CrossRef Google scholar
[5]
Konrad M, Vollmer M, Lemmink H H, Van den Heuvel L P W J, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, . Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. Journal of the American Society of Nephrology, 2000, 11(8): 1449–1459
[6]
Dutzler R, Campbell E B, Cadene M, Chait B T, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature, 2002, 415(6869): 287–294
CrossRef Google scholar
[7]
Valkenier H, Akrawi O, Jurček P, Sleziaková K, Lízal T, Bartik K, Šindelář V. Fluorinated bambusurils as highly effective and selective transmembrane Cl/HCO3 antiporters. Chem, 2019, 5(2): 429–444
CrossRef Google scholar
[8]
Clarke H J, Howe E N W, Wu X, Sommer F, Yano M, Light M E, Kubik S, Gale P A. Transmembrane fluoride transport: direct measurement and selectivity studies. Journal of the American Chemical Society, 2016, 138(50): 16515–16522
CrossRef Google scholar
[9]
Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Polyhydrazide-based organic nanotubes as efficient and selective artificial iodide channels. Angewandte Chemie International Edition, 2020, 59(12): 4806–4813
CrossRef Google scholar
[10]
Busschaert N, Karagiannidis L E, Wenzel M, Haynes C J E, Wells N J, Young P G, Makuc D, Plavec J, Jolliffe K A, Gale P A. Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chemical Science (Cambridge), 2014, 5(3): 1118–1127
CrossRef Google scholar
[11]
Wu X, Judd L W, Howe E N W, Withecombe A M, Soto-Cerrato V, Li H, Busschaert N, Valkenier H, Perez-Tomas R, Sheppard D N, . Nonprotonophoric electrogenic Cl transport mediated by valinomycin-like carriers. Chem, 2016, 1(1): 127–146
CrossRef Google scholar
[12]
Davis J T, Gale P A, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chemical Society Reviews, 2020, 49(16): 6056–6086
CrossRef Google scholar
[13]
Ren C, Zeng F, Shen J, Chen F, Roy A, Zhou S, Ren H, Zeng H. Pore-forming monopeptides as exceptionally active anion channels. Journal of the American Chemical Society, 2018, 140(28): 8817–8826
CrossRef Google scholar
[14]
Spooner M J, Li H, Marques I, Costa P M R, Wu X, Howe E N W, Busschaert N, Moore S J, Light M E, Sheppard D N, . Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chemical Science (Cambridge), 2019, 10(7): 1976–1985
CrossRef Google scholar
[15]
Gokel G W, Mukhopadhyay A. Synthetic models of cation-conducting channels. Chemical Society Reviews, 2001, 30(5): 274–286
CrossRef Google scholar
[16]
Yu F H, Catterall W A. Overview of the voltage-gated sodium channel family. Genome Biology, 2003, 4(3): 207
CrossRef Google scholar
[17]
Goldin A L. Resurgence of sodium channel research. Annual Review of Physiology, 2001, 63(1): 871–894
CrossRef Google scholar
[18]
Payandeh J, Scheuer T, Zheng N, Catterall W A. The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475(7356): 353–358
CrossRef Google scholar
[19]
Ryan D P, Ptacek L J. Episodic neurological channelopathies. Neuron, 2010, 68(2): 282–292
CrossRef Google scholar
[20]
Jentsch T J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Reviews. Neuroscience, 2000, 1(1): 21–30
CrossRef Google scholar
[21]
Sanguinetti M C, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature, 2006, 440(7083): 463–469
CrossRef Google scholar
[22]
Russell J M. Sodium-potassium-chloride cotransport. Physiological Reviews, 2000, 80(1): 211–276
CrossRef Google scholar
[23]
Simon D B, Karet F E, Hamdan J M, Pietro A D, Sanjad S A, Lifton R P. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nature Genetics, 1996, 13(2): 183–188
CrossRef Google scholar
[24]
Tong C C, Quesada R, Sessler J L, Gale P A. Meso-Octamethylcalix[4]pyrrole: an old yet new transmembrane ion-pair transporter. Chemical Communications, 2008, (47): 6321–6323
CrossRef Google scholar
[25]
Fisher M G, Gale P A, Hiscock J R, Hursthouse M B, Light M E, Schmidtchen F P, Tong C C. 1,2,3-Triazole-strapped calix[4]pyrrole: a new membrane transporter for chloride. Chemical Communications, 2009, 21(21): 3017–3019
CrossRef Google scholar
[26]
Koulov A V, Mahoney J M, Smith B D. Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt-binding macrobicycle. Organic & Biomolecular Chemistry, 2003, 1(1): 27–29
CrossRef Google scholar
[27]
Lee J H, Lee J H, Choi Y R, Kang P, Choi M G, Jeong K S. Synthetic K+/Cl-selective symporter across a phospholipid membrane. Journal of Organic Chemistry, 2014, 79(14): 6403–6409
CrossRef Google scholar
[28]
Yu X H, Cai X J, Hong X Q, Tam K Y, Zhang K, Chen W H. Synthesis and biological evaluation of aza-crown ether-squaramide conjugates as anion/cation symporters. Future Medicinal Chemistry, 2019, 11(10): 1091–1106
CrossRef Google scholar
[29]
Sun Z, Barboiu M, Legrand Y M, Petit E, Rotaru A. Highly selective artificial cholesteryl crown ether K+-channels. Angewandte Chemie International Edition, 2015, 54(48): 14473–14477
CrossRef Google scholar
[30]
Gilles A, Barboiu M. Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 2016, 138(1): 426–432
CrossRef Google scholar
[31]
Li Y H, Zheng S, Legrand Y M, Gilles A, van der Lee A, Barboiu M. Structure-driven selection of adaptive transmembrane Na+ carriers or K+ channels. Angewandte Chemie International Edition, 2018, 57(33): 10520–10524
CrossRef Google scholar
[32]
Chen S, Wang Y, Nie T, Bao C, Wang C, Xu T, Lin Q, Qu D H, Gong X, Yang Y, Zhu L, Tian H. An artificial molecular shuttle operates in lipid bilayers for ion transport. Journal of the American Chemical Society, 2018, 140(51): 17992–17998
CrossRef Google scholar
[33]
Wu F Y, Li Z, Guo L, Wang X, Lin M H, Zhao Y F, Jiang Y B. A unique NH-spacer for N-benzamidothiourea based anion sensors. Substituent effect on anion sensing of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-N′-arylthioureas. Organic & Biomolecular Chemistry, 2006, 4(4): 624–630
CrossRef Google scholar
[34]
Li A F, Wang J H, Wang F, Jiang Y B. Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 2010, 39(10): 3729–3745
CrossRef Google scholar
[35]
Villa M, Bergamini G, Ceroni P, Baroncini M. Photocontrolled self-assembly of azobenzene nanocontainers in water: light-triggered uptake and release of lipophilic molecules. Chemical Communications, 2019, 55(79): 11860–11863
CrossRef Google scholar
[36]
Du Z, Ren B, Chang X, Dong R, Peng J, Tong Z. Aggregation and rheology of an azobenzene-functionalized hydrophobically modified ethoxylated urethane in aqueous solution. Macromolecules, 2016, 49(13): 4978–4988
CrossRef Google scholar
[37]
Otis F, Racine-Berthiaume C, Voyer N. How far can a sodium ion travel within a lipid bilayer? Journal of the American Chemical Society, 2011, 133(17): 6481–6483
CrossRef Google scholar
[38]
Yang Y, Wu X, Busschaert N, Furuta H, Gale P A. Dissecting the chloride-nitrate anion transport assay. Chemical Communications, 2017, 53(66): 9230–9233
CrossRef Google scholar
[39]
Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S. Ditopic ion transport systems: anion-π interactions and halogen bonds at work. Angewandte Chemie International Edition, 2011, 50(49): 11675–11678
CrossRef Google scholar
[40]
Busschaert N, Wenzel M, Light M E, Iglesias-Hernandez P, Perez-Tomas R, Gale P A. Structure-activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. Journal of the American Chemical Society, 2011, 133(35): 14136–14148
CrossRef Google scholar
[41]
Valkenier H, Haynes C J E, Herniman J, Gale P A, Davis A P. Lipophilic balance—a new design principle for transmembrane anion carriers. Chemical Science (Cambridge), 2014, 5(3): 1128–1134
CrossRef Google scholar
[42]
Ren C, Shen J, Zeng H. Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 2017, 139(36): 12338–12341
CrossRef Google scholar
[43]
Ren C, Chen F, Ye R, Ong Y S, Lu H, Lee S S, Ying J Y, Zeng H. Molecular swings as highly active ion transporters. Angewandte Chemie International Edition, 2019, 58(24): 8034–8038
CrossRef Google scholar
[44]
Ye R, Ren C, Shen J, Li N, Chen F, Roy A, Zeng H. Molecular ion fishers as highly active and exceptionally selective K+ transporters. Journal of the American Chemical Society, 2019, 141(25): 9788–9792
CrossRef Google scholar
[45]
Liu T, Bao C, Wang H, Lin Y, Jia H, Zhu L. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization. Chemical Communications, 2013, 49(87): 10311–10313
CrossRef Google scholar
[46]
Sun Z, Gilles A, Kocsis I, Legrand Y M, Petit E, Barboiu M. Squalyl crown ether self-assembled conjugates: an example of highly selective artificial K+ channels. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(6): 2158–2164
CrossRef Google scholar
[47]
Schneider S, Licsandru E D, Kocsis I, Gilles A, Dumitru F, Moulin E, Tan J, Lehn J M, Giuseppone N, Barboiu M. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. Journal of the American Chemical Society, 2017, 139(10): 3721–3727
CrossRef Google scholar
[48]
Wu X, Small J R, Cataldo A, Withecombe A M, Turner P, Gale P A. Voltage-switchable HCl transport enabled by lipid headgroup-transporter interactions. Angewandte Chemie International Edition, 2019, 58(42): 15142–15147
CrossRef Google scholar
[49]
Wu X, Busschaert N, Wells N J, Jiang Y B, Gale P A. Dynamic covalent transport of amino acids across lipid bilayers. Journal of the American Chemical Society, 2015, 137(4): 1476–1484
CrossRef Google scholar
[50]
Zheng S P, Huang L B, Sun Z, Barboiu M. Self-assembled artificial ion-channels toward natural selection of functions. Angewandte Chemie International Edition, 2021, 60(2): 566–597
CrossRef Google scholar

Acknowledgements

We greatly appreciate the support of this work by the National Natural Science Foundation of China (Grant Nos. 21820102006, 91856118, 21435003 and 21521004), the MOE of China through Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT13036), and the Scientific and Technological Plan Project in Xiamen (Grant No. 3502Z20203025).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-021-2049-7 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(3896 KB)

Accesses

Citations

Detail

Sections
Recommended

/