Crown ether-thiourea conjugates as ion transporters

Zhixing Zhao , Bailing Tang , Xiaosheng Yan , Xin Wu , Zhao Li , Philip A. Gale , Yun-Bao Jiang

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (1) : 81 -91.

PDF (3896KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (1) : 81 -91. DOI: 10.1007/s11705-021-2049-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Crown ether-thiourea conjugates as ion transporters

Author information +
History +
PDF (3896KB)

Abstract

Na+, Cl and K+ are the most abundant electrolytes present in biological fluids that are essential to the regulation of pH homeostasis, membrane potential and cell volume in living organisms. Herein, we report synthetic crown ether-thiourea conjugates as a cation/anion symporter, which can transport both Na+ and Cl across lipid bilayers with relatively high transport activity. Surprisingly, the ion transport activities were diminished when high concentrations of K+ ions were present outside the vesicles. This unusual behavior resulted from the strong affinity of the transporters for K+ ions, which led to predominant partitioning of the transporters as the K+ complexes in the aqueous phase preventing the transporter incorporation into the membrane. Synthetic membrane transporters with Na+, Cl and K+ transport capabilities may have potential biological and medicinal applications.

Graphical abstract

Keywords

ion transport / thiourea / crown ether / symport

Cite this article

Download citation ▾
Zhixing Zhao, Bailing Tang, Xiaosheng Yan, Xin Wu, Zhao Li, Philip A. Gale, Yun-Bao Jiang. Crown ether-thiourea conjugates as ion transporters. Front. Chem. Sci. Eng., 2022, 16(1): 81-91 DOI:10.1007/s11705-021-2049-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu X, Howe E N W, Gale P A. Supramolecular transmembrane anion transport: new assays and insights. Accounts of Chemical Research, 2018, 51(8): 1870–1879

[2]

Fyles T M. How do amphiphiles form ion-conducting channels in membranes. Lessons from linear oligoesters. Accounts of Chemical Research, 2013, 46(12): 2847–2855

[3]

Davis A P, Sheppard D N, Smith B D. Development of synthetic membrane transporters for anions. Chemical Society Reviews, 2007, 36(2): 348–357

[4]

Zhang Z, Chen J. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell, 2016, 167(6): 1586–1597

[5]

Konrad M, Vollmer M, Lemmink H H, Van den Heuvel L P W J, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, . Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. Journal of the American Society of Nephrology, 2000, 11(8): 1449–1459

[6]

Dutzler R, Campbell E B, Cadene M, Chait B T, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature, 2002, 415(6869): 287–294

[7]

Valkenier H, Akrawi O, Jurček P, Sleziaková K, Lízal T, Bartik K, Šindelář V. Fluorinated bambusurils as highly effective and selective transmembrane Cl/HCO3 antiporters. Chem, 2019, 5(2): 429–444

[8]

Clarke H J, Howe E N W, Wu X, Sommer F, Yano M, Light M E, Kubik S, Gale P A. Transmembrane fluoride transport: direct measurement and selectivity studies. Journal of the American Chemical Society, 2016, 138(50): 16515–16522

[9]

Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Polyhydrazide-based organic nanotubes as efficient and selective artificial iodide channels. Angewandte Chemie International Edition, 2020, 59(12): 4806–4813

[10]

Busschaert N, Karagiannidis L E, Wenzel M, Haynes C J E, Wells N J, Young P G, Makuc D, Plavec J, Jolliffe K A, Gale P A. Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chemical Science (Cambridge), 2014, 5(3): 1118–1127

[11]

Wu X, Judd L W, Howe E N W, Withecombe A M, Soto-Cerrato V, Li H, Busschaert N, Valkenier H, Perez-Tomas R, Sheppard D N, . Nonprotonophoric electrogenic Cl transport mediated by valinomycin-like carriers. Chem, 2016, 1(1): 127–146

[12]

Davis J T, Gale P A, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chemical Society Reviews, 2020, 49(16): 6056–6086

[13]

Ren C, Zeng F, Shen J, Chen F, Roy A, Zhou S, Ren H, Zeng H. Pore-forming monopeptides as exceptionally active anion channels. Journal of the American Chemical Society, 2018, 140(28): 8817–8826

[14]

Spooner M J, Li H, Marques I, Costa P M R, Wu X, Howe E N W, Busschaert N, Moore S J, Light M E, Sheppard D N, . Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chemical Science (Cambridge), 2019, 10(7): 1976–1985

[15]

Gokel G W, Mukhopadhyay A. Synthetic models of cation-conducting channels. Chemical Society Reviews, 2001, 30(5): 274–286

[16]

Yu F H, Catterall W A. Overview of the voltage-gated sodium channel family. Genome Biology, 2003, 4(3): 207

[17]

Goldin A L. Resurgence of sodium channel research. Annual Review of Physiology, 2001, 63(1): 871–894

[18]

Payandeh J, Scheuer T, Zheng N, Catterall W A. The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475(7356): 353–358

[19]

Ryan D P, Ptacek L J. Episodic neurological channelopathies. Neuron, 2010, 68(2): 282–292

[20]

Jentsch T J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Reviews. Neuroscience, 2000, 1(1): 21–30

[21]

Sanguinetti M C, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature, 2006, 440(7083): 463–469

[22]

Russell J M. Sodium-potassium-chloride cotransport. Physiological Reviews, 2000, 80(1): 211–276

[23]

Simon D B, Karet F E, Hamdan J M, Pietro A D, Sanjad S A, Lifton R P. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nature Genetics, 1996, 13(2): 183–188

[24]

Tong C C, Quesada R, Sessler J L, Gale P A. Meso-Octamethylcalix[4]pyrrole: an old yet new transmembrane ion-pair transporter. Chemical Communications, 2008, (47): 6321–6323

[25]

Fisher M G, Gale P A, Hiscock J R, Hursthouse M B, Light M E, Schmidtchen F P, Tong C C. 1,2,3-Triazole-strapped calix[4]pyrrole: a new membrane transporter for chloride. Chemical Communications, 2009, 21(21): 3017–3019

[26]

Koulov A V, Mahoney J M, Smith B D. Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt-binding macrobicycle. Organic & Biomolecular Chemistry, 2003, 1(1): 27–29

[27]

Lee J H, Lee J H, Choi Y R, Kang P, Choi M G, Jeong K S. Synthetic K+/Cl-selective symporter across a phospholipid membrane. Journal of Organic Chemistry, 2014, 79(14): 6403–6409

[28]

Yu X H, Cai X J, Hong X Q, Tam K Y, Zhang K, Chen W H. Synthesis and biological evaluation of aza-crown ether-squaramide conjugates as anion/cation symporters. Future Medicinal Chemistry, 2019, 11(10): 1091–1106

[29]

Sun Z, Barboiu M, Legrand Y M, Petit E, Rotaru A. Highly selective artificial cholesteryl crown ether K+-channels. Angewandte Chemie International Edition, 2015, 54(48): 14473–14477

[30]

Gilles A, Barboiu M. Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 2016, 138(1): 426–432

[31]

Li Y H, Zheng S, Legrand Y M, Gilles A, van der Lee A, Barboiu M. Structure-driven selection of adaptive transmembrane Na+ carriers or K+ channels. Angewandte Chemie International Edition, 2018, 57(33): 10520–10524

[32]

Chen S, Wang Y, Nie T, Bao C, Wang C, Xu T, Lin Q, Qu D H, Gong X, Yang Y, Zhu L, Tian H. An artificial molecular shuttle operates in lipid bilayers for ion transport. Journal of the American Chemical Society, 2018, 140(51): 17992–17998

[33]

Wu F Y, Li Z, Guo L, Wang X, Lin M H, Zhao Y F, Jiang Y B. A unique NH-spacer for N-benzamidothiourea based anion sensors. Substituent effect on anion sensing of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-N′-arylthioureas. Organic & Biomolecular Chemistry, 2006, 4(4): 624–630

[34]

Li A F, Wang J H, Wang F, Jiang Y B. Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 2010, 39(10): 3729–3745

[35]

Villa M, Bergamini G, Ceroni P, Baroncini M. Photocontrolled self-assembly of azobenzene nanocontainers in water: light-triggered uptake and release of lipophilic molecules. Chemical Communications, 2019, 55(79): 11860–11863

[36]

Du Z, Ren B, Chang X, Dong R, Peng J, Tong Z. Aggregation and rheology of an azobenzene-functionalized hydrophobically modified ethoxylated urethane in aqueous solution. Macromolecules, 2016, 49(13): 4978–4988

[37]

Otis F, Racine-Berthiaume C, Voyer N. How far can a sodium ion travel within a lipid bilayer? Journal of the American Chemical Society, 2011, 133(17): 6481–6483

[38]

Yang Y, Wu X, Busschaert N, Furuta H, Gale P A. Dissecting the chloride-nitrate anion transport assay. Chemical Communications, 2017, 53(66): 9230–9233

[39]

Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S. Ditopic ion transport systems: anion-π interactions and halogen bonds at work. Angewandte Chemie International Edition, 2011, 50(49): 11675–11678

[40]

Busschaert N, Wenzel M, Light M E, Iglesias-Hernandez P, Perez-Tomas R, Gale P A. Structure-activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. Journal of the American Chemical Society, 2011, 133(35): 14136–14148

[41]

Valkenier H, Haynes C J E, Herniman J, Gale P A, Davis A P. Lipophilic balance—a new design principle for transmembrane anion carriers. Chemical Science (Cambridge), 2014, 5(3): 1128–1134

[42]

Ren C, Shen J, Zeng H. Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 2017, 139(36): 12338–12341

[43]

Ren C, Chen F, Ye R, Ong Y S, Lu H, Lee S S, Ying J Y, Zeng H. Molecular swings as highly active ion transporters. Angewandte Chemie International Edition, 2019, 58(24): 8034–8038

[44]

Ye R, Ren C, Shen J, Li N, Chen F, Roy A, Zeng H. Molecular ion fishers as highly active and exceptionally selective K+ transporters. Journal of the American Chemical Society, 2019, 141(25): 9788–9792

[45]

Liu T, Bao C, Wang H, Lin Y, Jia H, Zhu L. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization. Chemical Communications, 2013, 49(87): 10311–10313

[46]

Sun Z, Gilles A, Kocsis I, Legrand Y M, Petit E, Barboiu M. Squalyl crown ether self-assembled conjugates: an example of highly selective artificial K+ channels. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(6): 2158–2164

[47]

Schneider S, Licsandru E D, Kocsis I, Gilles A, Dumitru F, Moulin E, Tan J, Lehn J M, Giuseppone N, Barboiu M. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. Journal of the American Chemical Society, 2017, 139(10): 3721–3727

[48]

Wu X, Small J R, Cataldo A, Withecombe A M, Turner P, Gale P A. Voltage-switchable HCl transport enabled by lipid headgroup-transporter interactions. Angewandte Chemie International Edition, 2019, 58(42): 15142–15147

[49]

Wu X, Busschaert N, Wells N J, Jiang Y B, Gale P A. Dynamic covalent transport of amino acids across lipid bilayers. Journal of the American Chemical Society, 2015, 137(4): 1476–1484

[50]

Zheng S P, Huang L B, Sun Z, Barboiu M. Self-assembled artificial ion-channels toward natural selection of functions. Angewandte Chemie International Edition, 2021, 60(2): 566–597

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3896KB)

Supplementary files

FCE-20106-OF-ZZ_suppl_1

3549

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/