Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography

Carsten-Rene Arlt, Dominik Brekel, Stefan Neumann, David Rafaja, Matthias Franzreb

PDF(1090 KB)
PDF(1090 KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1346-1355. DOI: 10.1007/s11705-021-2040-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography

Author information +
History +

Abstract

The size fractionation of magnetic nanoparticles is a technical problem, which until today can only be solved with great effort. Nevertheless, there is an important demand for nanoparticles with sharp size distributions, for example for medical technology or sensor technology. Using magnetic chromatography, we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties. This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization. Since the strength of this interaction is related to particle size, the principle is suitable for size fractionation. This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography. Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm, the process showed a separation sharpness of up to 0.52 with recovery rates of 100%. The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min). Due to the easy scalability of continuous chromatography, the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.

Graphical abstract

Keywords

magnetic chromatography / simulated moving bed chromatography / magnetic nanoparticles / size fractionation

Cite this article

Download citation ▾
Carsten-Rene Arlt, Dominik Brekel, Stefan Neumann, David Rafaja, Matthias Franzreb. Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography. Front. Chem. Sci. Eng., 2021, 15(5): 1346‒1355 https://doi.org/10.1007/s11705-021-2040-3

References

[1]
Majidi S, Zeinali S F, Samiei M, Milani M, Abbasi E, Dadashzadeh K, Akbarzadeh A. Magnetic nanoparticles: applications in gene delivery and gene therapy. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(4): 1186–1193
[2]
Hedayatnasab Z, Abnisa F, Daud W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials & Design, 2017, 123: 174–196
CrossRef Google scholar
[3]
Mohammed L, Gomaa H G, Ragab D, Zhu J. Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology, 2017, 30: 1–14
CrossRef Google scholar
[4]
Rao L, Bu L L, Meng Q F, Cai B, Deng W W, Li A, Li K, Guo S S, Zhang W F, Liu W, Sun Z J, Zhao X Z. Antitumor platelet-mimicking magnetic nanoparticles. Advanced Functional Materials, 2017, 27(9): 1604774
CrossRef Google scholar
[5]
Cardoso V F, Francesko A, Ribeiro C, Bañobre L M, Martins P, Lanceros M S. Advances in magnetic nanoparticles for biomedical applications. Advanced Healthcare Materials, 2018, 7(5): 1700845
CrossRef Google scholar
[6]
Zhang H, Liu X L, Zhang Y F, Gao F, Li G L, He Y, Peng M L, Fan H M. Magnetic nanoparticles based cancer therapy: current status and applications. Science China. Life Sciences, 2018, 61(4): 400–414
CrossRef Google scholar
[7]
Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O. Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials (Basel, Switzerland), 2017, 7(9): 243
CrossRef Google scholar
[8]
Demin A M, Pershina A G, Minin A S, Mekhaev A V, Ivanov V V, Lezhava S P, Zakharova A A, Byzov I V, Uimin M A, Krasnov V P, Ogorodova L M. PMIDA-modified Fe3O4 magnetic nanoparticles: synthesis and application for liver MRI. Langmuir, 2018, 34(11): 3449–3458
CrossRef Google scholar
[9]
Arsalani S, Guidelli E J, Silveira M A, Salmon C E G, Araujo J, Bruno A C, Baffa O. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2019, 475: 458–464
CrossRef Google scholar
[10]
Gloag L, Mehdipour M, Chen D, Tilley R D, Gooding J J. Advances in the application of magnetic nanoparticles for sensing. Advanced Materials, 2019, 31(48): 1904385
CrossRef Google scholar
[11]
Scherer C, Figueiredo Neto A M. Ferrofluids: properties and applications. Brazilian Journal of Physics, 2005, 35(3a): 718–727
CrossRef Google scholar
[12]
Bao Y, Wen T, Samia A C S, Khandhar A, Krishnan K M. Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. Journal of Materials Science, 2016, 51(1): 513–553
CrossRef Google scholar
[13]
Ali I, Peng C, Naz I, Khan Z M, Sultan M, Islam T, Abbasi I A. Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Advances, 2017, 7(64): 40158–40178
CrossRef Google scholar
[14]
Simonsen G, Strand M, Øye G. Potential applications of magnetic nanoparticles within separation in the petroleum industry. Journal of Petroleum Science Engineering, 2018, 165: 488–495
CrossRef Google scholar
[15]
Guo X, Wu Z, Li W, Wang Z, Li Q, Kong F, Zhang H, Zhu X, Du Y P, Jin Y, Du Y, You J. Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Applied Materials & Interfaces, 2016, 8(5): 3092–3106
CrossRef Google scholar
[16]
Zhang S, Wu L, Cao J, Wang K, Ge Y, Ma W, Qi X, Shen S. Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy. Colloids and Surfaces. B, Biointerfaces, 2018, 170: 224–232
CrossRef Google scholar
[17]
Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C. Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. Journal of Magnetism and Magnetic Materials, 2007, 311(1): 10–16
CrossRef Google scholar
[18]
Ludwig F, Balceris C, Viereck T, Posth O, Steinhoff U, Gavilan H, Costo R, Zeng L, Olsson E, Jonasson C, Johansson C. Size analysis of single-core magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2017, 427: 19–24
CrossRef Google scholar
[19]
Hara S, Aisu J, Kato M, Aono T, Sugawa K, Takase K, Otsuki J, Shimizu S, Ikake H. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization. Nanoscale Research Letters, 2018, 13(1): 176
CrossRef Google scholar
[20]
Lee K W, Liu B Y H. On the minimum efficiency and the most penetrating particle size for fibrous filters. Journal of the Air Pollution Control Association, 1980, 30(4): 377–381
CrossRef Google scholar
[21]
da Roza R A. Particle size for greatest penetration of HEPA filters and their true efficiency. Technical Report. 1982
[22]
Bulejko P, Krištof O, Dohnal M, Svěrák T. Fine/ultrafine particle air filtration and aerosol loading of hollow-fiber membranes: a comparison of mathematical models for the most penetrating particle size and dimensionless permeability with experimental data. Journal of Membrane Science, 2019, 592: 117393
CrossRef Google scholar
[23]
Sandmann K, Fritsching U. Selektive partikelklassierung in ultraschallangeregten aerosolen. Chemieingenieurtechnik (Weinheim), 2020, 92(5): 635–642
CrossRef Google scholar
[24]
Kowalczyk B, Lagzi I, Grzybowski B A. Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid & Interface Science, 2011, 16(2): 135–148
CrossRef Google scholar
[25]
Lee S A, Choo K H, Lee C H, Lee H I, Hyeon T, Choi W, Kwon H H. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Industrial & Engineering Chemistry Research, 2001, 40(7): 1712–1719
CrossRef Google scholar
[26]
Akthakul A, Hochbaum A I, Stellacci F, Mayes A M. Size fractionation of metal nanoparticles by membrane filtration. Advanced Materials, 2005, 17(5): 532–535
CrossRef Google scholar
[27]
Wu M, Mao Z, Chen K, Bachman H, Chen Y, Rufo J, Ren L, Li P, Wang L, Huang T J. Acoustic separation of nanoparticles in continuous flow. Advanced Functional Materials, 2017, 27(14): 1606039
CrossRef Google scholar
[28]
Barasinski M, Garnweitner G. Restricted and unrestricted migration mechanisms of silica nanoparticles in agarose gels and their utilization for the separation of binary mixtures. Journal of Physical Chemistry C, 2020, 124(9): 5157–5166
CrossRef Google scholar
[29]
Konrath M, Brenner A K, Dillner E, Nirschl H. Centrifugal classification of ultrafine particles: influence of suspension properties and operating parameters on classification sharpness. Separation and Purification Technology, 2015, 156: 61–70
CrossRef Google scholar
[30]
Winkler M, Sonner H, Gleiss M, Nirschl H. Fractionation of ultrafine particles: evaluation of separation efficiency by UV-vis spectroscopy. Chemical Engineering Science, 2020, 213: 115374
CrossRef Google scholar
[31]
Kelland D R. Magnetic separation of nanoparticles. IEEE Transactions on Magnetics, 1998, 34(4): 2123–2125
CrossRef Google scholar
[32]
Fraga García P, Brammen M, Wolf M, Reinlein S, Freiherr von Roman M, Berensmeier S. High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Separation and Purification Technology, 2015, 150: 29–36
CrossRef Google scholar
[33]
Latham A H, Freitas R S, Schiffer P, Williams M E. Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles. Analytical Chemistry, 2005, 77(15): 5055–5062
CrossRef Google scholar
[34]
Carpino F, Zborowski M, Stephen Williams P. Quadrupole magnetic field-flow fractionation: a novel technique for the characterization of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 311(1): 383–387
CrossRef Google scholar
[35]
Wei G T, Liu F K. Separation of nanometer gold particles by size exclusion chromatography. Journal of Chromatography. A, 1999, 836(2): 253–260
CrossRef Google scholar
[36]
Süß S, Metzger C, Damm C, Segets D, Peukert W. Quantitative evaluation of nanoparticle classification by size-exclusion chromatography. Powder Technology, 2018, 339: 264–272
CrossRef Google scholar
[37]
Nomizu T, Nakashima H, Sato M, Tanaka T, Kawaguchi H. Magnetic chromatography of magnetic fine particles suspended in a liquid with a steel-bead column under a periodically intermittent magnetic field. Analytical Sciences, 1996, 12(6): 829–834
CrossRef Google scholar
[38]
Kim S B, Nakada C, Murase S, Okada H, Ohara T. Development of magnetic chromatograph system for magnetic particle and ion separation with superconducting magnet. Physica C: Superconductivity and its Applications, 2007, 463-465: 1306–1310
[39]
Noguchi S, Kim S. Investigation on novel magnetic chromatography with ferromagnetic nano-wires for ion separation. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2068–2071
CrossRef Google scholar
[40]
Arlt C R, Tschöpe A, Franzreb M. Size fractionation of magnetic nanoparticles by magnetic chromatography. Journal of Magnetism and Magnetic Materials, 2020, 497: 165967
CrossRef Google scholar
[41]
Biehl P, von der Lühe M, Dutz S, Schacher F H. Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers, 2018, 10(1): 91
CrossRef Google scholar
[42]
Satzer P, Wellhoefer M, Jungbauer A. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography. Journal of Chromatography. A, 2014, 1349: 44–49
CrossRef Google scholar
[43]
Dyankova S, Doneva M, Todorov Y, Terziyska M. Determination of particle size distribution and analysis of a natural food supplement on pectin base. IOSR Journal of Pharmacy, 2016, 6(5): 1–8
[44]
Rajendran A, Paredes G, Mazzotti M. Simulated moving bed chromatography for the separation of enantiomers. Journal of Chromatography. A, 2009, 1216(4): 709–738
CrossRef Google scholar
[45]
Mazzotti M, Storti G, Morbidelli M. Supercritical fluid simulated moving bed chromatography. Journal of Chromatography. A, 1997, 786(2): 309–320
CrossRef Google scholar
[46]
Lim J, Yeap S P, Che H X, Low S C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters, 2013, 8(1): 381
CrossRef Google scholar
[47]
Szepessy S, Thorwid P. Low energy consumption of high-speed centrifuges. Chemical Engineering & Technology, 2018, 41(12): 2375–2384
CrossRef Google scholar

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) within the priority program SPP 2045 (Project C11, Grant-Nr. FR 2131/6-1 and Project Z1, Grant-Nr. RA1050/25-1). Furthermore, we thank Mrs. A. Leuteritz for preparing the TEM specimens and the company micromod for the contribution of experimental material.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-021-2040-3 and is accessible for authorized users.
Funding note: Open Access funding enabled and organized by Projekt DEAL.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(1090 KB)

Accesses

Citations

Detail

Sections
Recommended

/