Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography

Carsten-Rene Arlt , Dominik Brekel , Stefan Neumann , David Rafaja , Matthias Franzreb

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1346 -1355.

PDF (1090KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1346 -1355. DOI: 10.1007/s11705-021-2040-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography

Author information +
History +
PDF (1090KB)

Abstract

The size fractionation of magnetic nanoparticles is a technical problem, which until today can only be solved with great effort. Nevertheless, there is an important demand for nanoparticles with sharp size distributions, for example for medical technology or sensor technology. Using magnetic chromatography, we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties. This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization. Since the strength of this interaction is related to particle size, the principle is suitable for size fractionation. This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography. Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm, the process showed a separation sharpness of up to 0.52 with recovery rates of 100%. The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min). Due to the easy scalability of continuous chromatography, the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.

Graphical abstract

Keywords

magnetic chromatography / simulated moving bed chromatography / magnetic nanoparticles / size fractionation

Cite this article

Download citation ▾
Carsten-Rene Arlt, Dominik Brekel, Stefan Neumann, David Rafaja, Matthias Franzreb. Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography. Front. Chem. Sci. Eng., 2021, 15(5): 1346-1355 DOI:10.1007/s11705-021-2040-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Majidi S, Zeinali S F, Samiei M, Milani M, Abbasi E, Dadashzadeh K, Akbarzadeh A. Magnetic nanoparticles: applications in gene delivery and gene therapy. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(4): 1186–1193

[2]

Hedayatnasab Z, Abnisa F, Daud W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials & Design, 2017, 123: 174–196

[3]

Mohammed L, Gomaa H G, Ragab D, Zhu J. Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology, 2017, 30: 1–14

[4]

Rao L, Bu L L, Meng Q F, Cai B, Deng W W, Li A, Li K, Guo S S, Zhang W F, Liu W, Sun Z J, Zhao X Z. Antitumor platelet-mimicking magnetic nanoparticles. Advanced Functional Materials, 2017, 27(9): 1604774

[5]

Cardoso V F, Francesko A, Ribeiro C, Bañobre L M, Martins P, Lanceros M S. Advances in magnetic nanoparticles for biomedical applications. Advanced Healthcare Materials, 2018, 7(5): 1700845

[6]

Zhang H, Liu X L, Zhang Y F, Gao F, Li G L, He Y, Peng M L, Fan H M. Magnetic nanoparticles based cancer therapy: current status and applications. Science China. Life Sciences, 2018, 61(4): 400–414

[7]

Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O. Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials (Basel, Switzerland), 2017, 7(9): 243

[8]

Demin A M, Pershina A G, Minin A S, Mekhaev A V, Ivanov V V, Lezhava S P, Zakharova A A, Byzov I V, Uimin M A, Krasnov V P, Ogorodova L M. PMIDA-modified Fe3O4 magnetic nanoparticles: synthesis and application for liver MRI. Langmuir, 2018, 34(11): 3449–3458

[9]

Arsalani S, Guidelli E J, Silveira M A, Salmon C E G, Araujo J, Bruno A C, Baffa O. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2019, 475: 458–464

[10]

Gloag L, Mehdipour M, Chen D, Tilley R D, Gooding J J. Advances in the application of magnetic nanoparticles for sensing. Advanced Materials, 2019, 31(48): 1904385

[11]

Scherer C, Figueiredo Neto A M. Ferrofluids: properties and applications. Brazilian Journal of Physics, 2005, 35(3a): 718–727

[12]

Bao Y, Wen T, Samia A C S, Khandhar A, Krishnan K M. Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. Journal of Materials Science, 2016, 51(1): 513–553

[13]

Ali I, Peng C, Naz I, Khan Z M, Sultan M, Islam T, Abbasi I A. Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Advances, 2017, 7(64): 40158–40178

[14]

Simonsen G, Strand M, Øye G. Potential applications of magnetic nanoparticles within separation in the petroleum industry. Journal of Petroleum Science Engineering, 2018, 165: 488–495

[15]

Guo X, Wu Z, Li W, Wang Z, Li Q, Kong F, Zhang H, Zhu X, Du Y P, Jin Y, Du Y, You J. Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Applied Materials & Interfaces, 2016, 8(5): 3092–3106

[16]

Zhang S, Wu L, Cao J, Wang K, Ge Y, Ma W, Qi X, Shen S. Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy. Colloids and Surfaces. B, Biointerfaces, 2018, 170: 224–232

[17]

Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C. Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. Journal of Magnetism and Magnetic Materials, 2007, 311(1): 10–16

[18]

Ludwig F, Balceris C, Viereck T, Posth O, Steinhoff U, Gavilan H, Costo R, Zeng L, Olsson E, Jonasson C, Johansson C. Size analysis of single-core magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2017, 427: 19–24

[19]

Hara S, Aisu J, Kato M, Aono T, Sugawa K, Takase K, Otsuki J, Shimizu S, Ikake H. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization. Nanoscale Research Letters, 2018, 13(1): 176

[20]

Lee K W, Liu B Y H. On the minimum efficiency and the most penetrating particle size for fibrous filters. Journal of the Air Pollution Control Association, 1980, 30(4): 377–381

[21]

da Roza R A. Particle size for greatest penetration of HEPA filters and their true efficiency. Technical Report. 1982

[22]

Bulejko P, Krištof O, Dohnal M, Svěrák T. Fine/ultrafine particle air filtration and aerosol loading of hollow-fiber membranes: a comparison of mathematical models for the most penetrating particle size and dimensionless permeability with experimental data. Journal of Membrane Science, 2019, 592: 117393

[23]

Sandmann K, Fritsching U. Selektive partikelklassierung in ultraschallangeregten aerosolen. Chemieingenieurtechnik (Weinheim), 2020, 92(5): 635–642

[24]

Kowalczyk B, Lagzi I, Grzybowski B A. Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid & Interface Science, 2011, 16(2): 135–148

[25]

Lee S A, Choo K H, Lee C H, Lee H I, Hyeon T, Choi W, Kwon H H. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Industrial & Engineering Chemistry Research, 2001, 40(7): 1712–1719

[26]

Akthakul A, Hochbaum A I, Stellacci F, Mayes A M. Size fractionation of metal nanoparticles by membrane filtration. Advanced Materials, 2005, 17(5): 532–535

[27]

Wu M, Mao Z, Chen K, Bachman H, Chen Y, Rufo J, Ren L, Li P, Wang L, Huang T J. Acoustic separation of nanoparticles in continuous flow. Advanced Functional Materials, 2017, 27(14): 1606039

[28]

Barasinski M, Garnweitner G. Restricted and unrestricted migration mechanisms of silica nanoparticles in agarose gels and their utilization for the separation of binary mixtures. Journal of Physical Chemistry C, 2020, 124(9): 5157–5166

[29]

Konrath M, Brenner A K, Dillner E, Nirschl H. Centrifugal classification of ultrafine particles: influence of suspension properties and operating parameters on classification sharpness. Separation and Purification Technology, 2015, 156: 61–70

[30]

Winkler M, Sonner H, Gleiss M, Nirschl H. Fractionation of ultrafine particles: evaluation of separation efficiency by UV-vis spectroscopy. Chemical Engineering Science, 2020, 213: 115374

[31]

Kelland D R. Magnetic separation of nanoparticles. IEEE Transactions on Magnetics, 1998, 34(4): 2123–2125

[32]

Fraga García P, Brammen M, Wolf M, Reinlein S, Freiherr von Roman M, Berensmeier S. High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Separation and Purification Technology, 2015, 150: 29–36

[33]

Latham A H, Freitas R S, Schiffer P, Williams M E. Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles. Analytical Chemistry, 2005, 77(15): 5055–5062

[34]

Carpino F, Zborowski M, Stephen Williams P. Quadrupole magnetic field-flow fractionation: a novel technique for the characterization of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 311(1): 383–387

[35]

Wei G T, Liu F K. Separation of nanometer gold particles by size exclusion chromatography. Journal of Chromatography. A, 1999, 836(2): 253–260

[36]

Süß S, Metzger C, Damm C, Segets D, Peukert W. Quantitative evaluation of nanoparticle classification by size-exclusion chromatography. Powder Technology, 2018, 339: 264–272

[37]

Nomizu T, Nakashima H, Sato M, Tanaka T, Kawaguchi H. Magnetic chromatography of magnetic fine particles suspended in a liquid with a steel-bead column under a periodically intermittent magnetic field. Analytical Sciences, 1996, 12(6): 829–834

[38]

Kim S B, Nakada C, Murase S, Okada H, Ohara T. Development of magnetic chromatograph system for magnetic particle and ion separation with superconducting magnet. Physica C: Superconductivity and its Applications, 2007, 463-465: 1306–1310

[39]

Noguchi S, Kim S. Investigation on novel magnetic chromatography with ferromagnetic nano-wires for ion separation. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2068–2071

[40]

Arlt C R, Tschöpe A, Franzreb M. Size fractionation of magnetic nanoparticles by magnetic chromatography. Journal of Magnetism and Magnetic Materials, 2020, 497: 165967

[41]

Biehl P, von der Lühe M, Dutz S, Schacher F H. Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers, 2018, 10(1): 91

[42]

Satzer P, Wellhoefer M, Jungbauer A. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography. Journal of Chromatography. A, 2014, 1349: 44–49

[43]

Dyankova S, Doneva M, Todorov Y, Terziyska M. Determination of particle size distribution and analysis of a natural food supplement on pectin base. IOSR Journal of Pharmacy, 2016, 6(5): 1–8

[44]

Rajendran A, Paredes G, Mazzotti M. Simulated moving bed chromatography for the separation of enantiomers. Journal of Chromatography. A, 2009, 1216(4): 709–738

[45]

Mazzotti M, Storti G, Morbidelli M. Supercritical fluid simulated moving bed chromatography. Journal of Chromatography. A, 1997, 786(2): 309–320

[46]

Lim J, Yeap S P, Che H X, Low S C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters, 2013, 8(1): 381

[47]

Szepessy S, Thorwid P. Low energy consumption of high-speed centrifuges. Chemical Engineering & Technology, 2018, 41(12): 2375–2384

AI Summary AI Mindmap
PDF (1090KB)

Supplementary files

Electronic Supplementary Material

6388

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/