A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection

Yui Sasaki , Xiaojun Lyu , Zhoujie Zhang , Tsuyoshi Minami

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (1) : 72 -80.

PDF (1478KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (1) : 72 -80. DOI: 10.1007/s11705-021-2037-y
RESEARCH ARTICLE
RESEARCH ARTICLE

A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection

Author information +
History +
PDF (1478KB)

Abstract

Chemosensor arrays have a great potential for on-site applications in real-world scenarios. However, to fabricate on chemosensor array a number of chemosensors are required to obtain various optical patterns for multi-analyte detection. Herein, we propose a minimized chemosensor array composed of only two types of carboxylate-functionalized polythiophene derivatives for the detection of eight types of metal ions. Upon recognition of the metal ions, the polythiophenes exhibited changes in their fluorescence intensity and various spectral shifts. Although both chemosensors have the same polymer backbone and recognition moiety, only the difference in the number of methylene groups contributed to the difference in the fluorescence response patterns. Consequently, the metal ions in aqueous media were successfully discriminated qualitatively and quantitatively by the chemosensor microarray on the glass chip. This study offers an approach for achieving a minimized chemosensor array just by changing the alkyl chain lengths without the necessity for many receptors and reporters.

Graphical abstract

Keywords

metal ions / polythiophene / chemosensor array / fluorescence / pattern recognition

Cite this article

Download citation ▾
Yui Sasaki, Xiaojun Lyu, Zhoujie Zhang, Tsuyoshi Minami. A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection. Front. Chem. Sci. Eng., 2022, 16(1): 72-80 DOI:10.1007/s11705-021-2037-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anzenbacher P Jr, Lubal P, Buček P, Palacios M A, Kozelkova M E. A practical approach to optical cross-reactive sensor arrays. Chemical Society Reviews, 2010, 39(10): 3954–3979

[2]

Li Z, Askim J R, Suslick K S. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chemical Reviews, 2019, 119(1): 231–292

[3]

Diehl K L, Anslyn E V. Array sensing using optical methods for detection of chemical and biological hazards. Chemical Society Reviews, 2013, 42(22): 8596–8611

[4]

Sasaki Y, Kubota R, Minami T. Molecular self-assembled chemosensors and their arrays. Coordination Chemistry Reviews, 2021, 429: 213607

[5]

Smith D G, Topolnicki I L, Zwicker V E, Jolliffe K A, New E J. Fluorescent sensing arrays for cations and anions. Analyst, 2017, 142(19): 3549–3563

[6]

Lavigne J J, Anslyn E V. Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angewandte Chemie International Edition, 2001, 40(17): 3118–3130

[7]

Geng Y, Peveler W J, Rotello V M. Array-based “chemical nose” sensing in diagnostics and drug discovery. Angewandte Chemie International Edition, 2019, 58(16): 5190–5200

[8]

Shimizu K D, Stephenson C J. Molecularly imprinted polymer sensor arrays. Current Opinion in Chemical Biology, 2010, 14(6): 743–750

[9]

Ikeda M, Ochi R, Hamachi I. Supramolecular hydrogel-based protein and chemosensor array. Lab on a Chip, 2010, 10(24): 3325–3334

[10]

Lemieux É J, Leclerc M. Conjugated Polyelectrolytes: Fundamentals and Applications. New Jersey: Wiley-VCH Weinheim, 2013, 231–261

[11]

McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors. Chemical Reviews, 2000, 100(7): 2537–2574

[12]

Bunz U H F. Poly(p-phenyleneethynylene)s by alkyne metathesis. Accounts of Chemical Research, 2001, 34(12): 998–1010

[13]

Miranda O R, You C C, Phillips R, Kim I B, Ghosh P S, Bunz U H F, Rotello V M. Array-based sensing of proteins using conjugated polymers. Journal of the American Chemical Society, 2007, 129(32): 9856–9857

[14]

Rhee H W, Lee S W, Lee J S, Chang Y T, Hong J I. Focused fluorescent probe library for metal cations and biological anions. ACS Combinatorial Science, 2013, 15(9): 483–490

[15]

Ihde M H, Pridmore C F, Bonizzoni M. Pattern-based recognition systems: overcoming the problem of mixtures. Analytical Chemistry, 2020, 92(24): 16213–16220

[16]

Han J, Wang B, Bender M, Seehafer K, Bunz U H F. Water-soluble poly(p-aryleneethynylene)s: a sensor array discriminates aromatic carboxylic acids. ACS Applied Materials & Interfaces, 2016, 8(31): 20415–20421

[17]

Sasaki Y, Kojima S, Hamedpour V, Kubota R, Takizawa S, Yoshikawa I, Houjou H, Kubo Y, Minami T. Accurate chiral pattern recognition for amines from just a single chemosensor. Chemical Science, 2020, 11(15): 3790–3796

[18]

Cao Z, Cao Y, Kubota R, Sasaki Y, Asano K, Lyu X, Zhang Z, Zhou Q, Zhao X, Xu X, Wu S, Minami T, Liu Y. Fluorescence anion chemosensor array based on pyrenylboronic acid. Frontiers in Chemistry, 2020, 8: 414

[19]

Cao Y, Zhang L, Huang X, Xin Y, Ding L. Discrimination of metalloproteins by a mini sensor array based on bispyrene fluorophore/surfactant aggregate ensembles. ACS Applied Materials & Interfaces, 2016, 8(51): 35650–35659

[20]

Anzenbacher P Jr, Liu Y, Palacios M A, Minami T, Wang Z, Nishiyabu R. Leveraging material properties in fluorescence anion sensor arrays: a general approach. Chemistry—A European Journal, 2013, 19(26): 8497–8506

[21]

Sasaki Y, Leclerc É, Hamedpour V, Kubota R, Takizawa S, Sakai Y, Minami T. Simplest chemosensor array for phosphorylated saccharides. Analytical Chemistry, 2019, 91(24): 15570–15576

[22]

Zaubitzer F, Buryak A, Severin K. Cp*Rh-based indicator-displacement assays for the identification of amino sugars and aminoglycosides. Chemistry—A European Journal, 2006, 12(14): 3928–3934

[23]

Palacios M A, Wang Z, Montes V A, Zyryanov G V, Anzenbacher P Jr. Rational design of a minimal size sensor array for metal ion detection. Journal of the American Chemical Society, 2008, 130(31): 10307–10314

[24]

Liang X, Bonizzoni M. Boronic acid-modified poly(amidoamine) dendrimers as sugar-sensing materials in water. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2016, 4(18): 3094–3103

[25]

Liu C, Wang P, Liu X, Yi X, Zhou Z, Liu D. Supramolecular fluorescent sensor array for simultaneous qualitative and quantitative analysis of quaternary ammonium herbicides. New Journal of Chemistry, 2018, 42(21): 17317–17322

[26]

Yao Z, Feng X, Hong W, Li C, Shi G. A simple approach for the discrimination of nucleotides based on a water-soluble polythiophene derivative. Chemical Communications, 2009, 31(31): 4696–4698

[27]

Maynor M S, Deason T K, Nelson T L, Lavigne J J. Multidimensional response analysis towards the detection and identification of soft divalent metal ions. Supramolecular Chemistry, 2009, 21(3-4): 310–315

[28]

Li C, Shi G. Polythiophene-based optical sensors for small molecules. ACS Applied Materials & Interfaces, 2013, 5(11): 4503–4510

[29]

Doré K, Dubus S, Ho H A, Lévesque I, Brunette M, Corbeil G, Boissinot M, Boivin G, Bergeron M G, Boudreau D, Leclerc M. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole Level. Journal of the American Chemical Society, 2004, 126(13): 4240–4244

[30]

McCullough R D, Ewbank P C, Loewe R S. Self-assembly and disassembly of regioregular, water soluble polythiophenes: chemoselective ionchromatic sensing in water. Journal of the American Chemical Society, 1997, 119(3): 633–634

[31]

Li C, Numata M, Takeuchi M, Shinkai S. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angewandte Chemie International Edition, 2005, 44(39): 6371–6374

[32]

Ho H A, Leclerc M. New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodide-specific detection. Journal of the American Chemical Society, 2003, 125(15): 4412–4413

[33]

Sasaki Y, Ito S, Zhang Z, Lyu X, Takizawa S, Kubota R, Minami T. Supramolecular sensor for astringent procyanidin C1: fluorescent artificial tongue for wine components. Chemistry—A European Journal, 2020, 26(69): 16236–16240

[34]

Domínguez S E, Meriläinen M, Ääritalo T, Damlin P, Kvarnström C. Effect of alkoxy-spacer length and solvent on diluted solutions of cationic isothiouronium polythiophenes. RSC Advances, 2017, 7(13): 7648–7657

[35]

Minami T, Kubo Y. Fluorescence sensing of phytate in water using an isothiouronium-attached polythiophene. Chemistry—A Asian Journal, 2010, 5(3): 605–611

[36]

An Y, Xiao K, Yao Z, Li C. Conjugated polyelectrolyte based colorimetric array for the discrimination of primary amino acids. ChemistrySelect, 2020, 5(18): 5400–5403

[37]

Liu L, Zhao L, Cheng D, Yao X, Lu Y. Highly selective fluorescence sensing and imaging of ATP using a boronic acid groups-bearing polythiophene derivate. Polymers, 2019, 11(7): 1139

[38]

Pal S, Chatterjee N, Bharadwaj P K. Selectively sensing first-row transition metal ions through fluorescence enhancement. RSC Advances, 2014, 4(51): 26585–26620

[39]

Wang Z, Palacios M A, Anzenbacher P Jr. Fluorescence sensor array for metal ion detection based on various coordination chemistries: general performance and potential application. Analytical Chemistry, 2008, 80(19): 7451–7459

[40]

Xu W, Ren C, Teoh C L, Peng J, Gadre S H, Rhee H W, Lee C L K, Chang Y T. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Analytical Chemistry, 2014, 86(17): 8763–8769

[41]

Smith D G, Sajid N, Rehn S, Chandramohan R, Carney I J, Khan M A, New E J. A library-screening approach for developing a fluorescence sensing array for the detection of metal ions. Analyst, 2016, 141(15): 4608–4613

[42]

Hwang I H, Hong K I, Jeong K S, Jang W D. Carbazole-based molecular tweezers as platforms for the discrimination of heavy metal ions. RSC Advances, 2015, 5(2): 1097–1102

[43]

Sasaki Y, Minamiki T, Tokito S, Minami T. A molecular self-assembled colourimetric chemosensor array for simultaneous detection of metal ions in water. Chemical Communications, 2017, 53(49): 6561–6564

[44]

Inoue M B, Velazquez E F, Inoue M. One-step chemical synthesis of doped polythiophene by use of copper(II) perchlorate as an oxidant. Synthetic Metals, 1988, 24(3): 223–229

[45]

Minami T, Kubo Y. Selective anion-induced helical aggregation of chiral amphiphilic polythiophenes with isothiouronium-appended pendants. Supramolecular Chemistry, 2011, 23(1-2): 13–18

[46]

Derakhshesh M, Gray M R, Dechaine G P. Dispersion of asphaltene nanoaggregates and the role of rayleigh scattering in the absorption of visible electromagnetic radiation by these nanoaggregates. Energy & Fuels, 2013, 27(2): 680–693

[47]

Rasmussen S C, Evenson S J, McCausland C B. Fluorescent thiophene-based materials and their outlook for emissive applications. Chemical Communications, 2015, 51(22): 4528–4543

[48]

Wang X, Zhao J, Guo C, Pei M, Zhang G. Simple hydrazide-based fluorescent sensors for highly sensitive and selective optical signaling of Cu2+ and Hg2+ in aqueous solution. Sensors and Actuators. B, Chemical, 2014, 193: 157–165

[49]

Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in stern-volmer plots. Journal of the American Chemical Society, 1983, 105(6): 1494–1498

[50]

You J, Kim J, Park T, Kim B, Kim E. Highly fluorescent conjugated polyelectrolyte nanostructures: synthesis, self-assembly, and Al3+ ion sensing. Advanced Functional Materials, 2012, 22(7): 1417–1424

[51]

Chen Y, Pu K Y, Fan Q L, Qi X Y, Huang Y Q, Lu X M, Huang W. Water-soluble anionic conjugated polymers for metal ion sensing: effect of interchain aggregation. Journal of Polymer Science. Part A, Polymer Chemistry, 2009, 47(19): 5057–5067

[52]

Bala T, Prasad B L V, Sastry M, Kahaly M U, Waghmare U V. Interaction of different metal ions with carboxylic acid group: a quantitative study. Journal of Physical Chemistry A, 2007, 111(28): 6183–6190

[53]

Miller J N, Miller J C. Statistics and Chemometrics for Analytical Chemistry. 7th ed. Essex: Pearson Higher Education, 2018

[54]

Wolfbeis O S. Materials for fluorescence-based optical chemical sensors. Journal of Materials Chemistry, 2005, 15(27-28): 2657–2669

[55]

Anzenbacher P Jr, Liu Y L, Kozelkova M E. Hydrophilic polymer matrices in optical array sensing. Current Opinion in Chemical Biology, 2010, 14(6): 693–704

[56]

Guo T R, Zhang G P, Zhang Y H. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids and Surfaces. B, Biointerfaces, 2007, 57(2): 182–188

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1478KB)

Supplementary files

Electronic Supplementary Material

3992

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/