Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors

Xiqing Luo, Miaomiao Jiang, Kun Shi, Zhangxian Chen, Zeheng Yang, Weixin Zhang

PDF(2696 KB)
PDF(2696 KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1322-1331. DOI: 10.1007/s11705-021-2036-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors

Author information +
History +

Abstract

For high performance supercapacitors, novel hierarchical yolk-shell a-Ni(OH)2/Mn2O3 microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique a-Ni(OH)2 based yolk-shell microstructures decorated with numerous interconnected nanosheets and the hetero-composition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the a-Ni(OH)2 microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L−1 KOH aqueous electrolyte for supercapacitors, the yolk-shell a-Ni(OH)2/Mn2O3 microspheres exhibited a considerably high specific capacitance of 2228.6 F·g−1 at 1 A·g−1 and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g−1. The proposed a-Ni(OH)2/Mn2O3 microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.

Graphical abstract

Keywords

α-Ni(OH)2/Mn2O3 / yolk-shell microspheres / electrode material / high specific capacitance / supercapacitors

Cite this article

Download citation ▾
Xiqing Luo, Miaomiao Jiang, Kun Shi, Zhangxian Chen, Zeheng Yang, Weixin Zhang. Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors. Front. Chem. Sci. Eng., 2021, 15(5): 1322‒1331 https://doi.org/10.1007/s11705-021-2036-z

References

[1]
Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Owusu K A, Mai L Q, Yu Y. A new view of supercapacitors: integrated supercapacitors. Advanced Energy Materials, 2019, 9(36): 1901081–1901091
CrossRef Google scholar
[2]
Yan J, Li S H, Lan B B, Wu Y C, Lee P S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Advanced Functional Materials, 2020, 30(2): 1902564–1902598
CrossRef Google scholar
[3]
Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J. Asymmetric supercapacitor electrodes and devices. Advanced Materials, 2017, 29(21): 1605336–1605365
CrossRef Google scholar
[4]
Patrice S, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854
CrossRef Google scholar
[5]
Thubsuang U, Chotirut S, Thongnok A, Promraksa A, Nisoa M, Manmuanpom N, Wongkasemjit S, Chaisuwan T. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance. Frontiers of Chemical Science and Engineering, 2020, 14(1): 1–15
CrossRef Google scholar
[6]
Bi S, Banda H, Chen M, Niu L, Chen M Y, Wu T Z, Wang J S, Wang R X, Feng J M, Chen T Y, Dincă M, Kornyshev A A, Feng G. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19(5): 552–560
CrossRef Google scholar
[7]
Choi C, Ashby D S, Butts D M, DeBlock R H, Wei Q L, Lau J, Dunn B. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews. Materials, 2020, 5(1): 5–19
CrossRef Google scholar
[8]
Mofarah S S, Adabifiroozjaei E, Yao Y, Koshy P, Lim S, Webster R, Liu X H, Nekouei R K, Cazorla C, Liu Z, Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2−x for pseudocapacitive energy storage applications. Nature Communications, 2019, 10(1): 2594–2602
CrossRef Google scholar
[9]
Huang Y, Yang C, Deng B H, Wang C, Li Q W, Thibault C D, Huang K, Huo K F, Wu H. Nanostructured pseudocapacitors with pH-tunable electrolyte for electrochromic smart windows. Nano Energy, 2019, 66: 104200–104205
CrossRef Google scholar
[10]
Morag A, Maman N, Froumin N, Ezersky V, Rechav K, Jelinek R. Nanostructured nickel/ruthenium/ruthenium-oxide supercapacitor displaying exceptional high frequency response. Advanced Electronic Materials, 2019, 6(1): 1900844–1900852
CrossRef Google scholar
[11]
Yu X Y, Lou X W. Mixed metal sulfides for electrochemical energy storage and conversion. Advanced Energy Materials, 2018, 8(3): 1701592–1701628
CrossRef Google scholar
[12]
Kulkarni P, Nataraj S K, Balakrishna R G, Nagaraju D H, Reddy M V. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(42): 22040–22094
CrossRef Google scholar
[13]
Banerjee J, Dutta K, Kader M A, Nayak S K. An overview on the recent developments in polyaniline-based supercapacitors. Polymers for Advanced Technologies, 2019, 30(8): 1902–1921
CrossRef Google scholar
[14]
Girl S, Ghosh D, Das C K. Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Advanced Functional Materials, 2014, 24(9): 1312–1324
CrossRef Google scholar
[15]
Liu P B, Yan J, Guang Z X, Huang Y, Li X F, Huang W H. Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424: 108–130
CrossRef Google scholar
[16]
Gao B A, Li X X, Ding K, Huang C, Li Q W, Chu P K, Huo K F. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(1): 14–37
CrossRef Google scholar
[17]
Li K Z, Zhao B C, Bai J, Ma H Y, Fang Z T, Zhu X B, Sun Y P. A high-energy-density hybrid supercapacitor with P-Ni(OH)2@Co(OH)2 core-shell heterostructure and Fe2O3 nanoneedle arrays as advanced integrated electrodes. Small, 2020, 16(32): 2001974–2001982
CrossRef Google scholar
[18]
Pan Y M, Mei Z S, Yang Z H, Zhang W X, Pei B, Yao H X. Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes. Chemical Engineering Journal, 2014, 242: 397–403
CrossRef Google scholar
[19]
Yang Z H, Xu F F, Zhang W X, Mei Z S, Pei B, Zhu X. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. Journal of Power Sources, 2014, 246: 24–31
CrossRef Google scholar
[20]
Shao Z M, Fan X M, Liu X Y, Yang Z H, Wang L, Chen Z X, Zhang W X. Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765: 489–496
CrossRef Google scholar
[21]
Xu J S, Fan X M, Xia Q, Shao Z M, Pei B, Yang Z H, Chen Z X, Zhang W X. A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. Journal of Alloys and Compounds, 2016, 685: 949–956
CrossRef Google scholar
[22]
Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499
CrossRef Google scholar
[23]
Li J B, Cao W, Zhou N, Xu F, Chen N, Liu Y, Du G P. Hierarchically nanostructured Ni(OH)2-MnO2@C ternary composites derived from Ni-MOFs grown on nickel foam as high-performance integrated electrodes for hybrid supercapacitors. Electrochimica Acta, 2020, 343: 136139–136149
CrossRef Google scholar
[24]
Krishnaveni M, Suresh C M, Wu J J, Asiri A M, Anandan S, Ashokkumar M. Synthesis of 3D marigold flower-like rGO/BN/Ni(OH)2 ternary nanocomposites for supercapacitor applications. Sustainable Energy & Fuels, 2020, 4(6): 3090–3101
CrossRef Google scholar
[25]
Mohammed M M, Abd-Elrahim A, Chun D M. One-step deposition of a Ni(OH)2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor. Materials Chemistry and Physics, 2020, 244: 122701–122710
CrossRef Google scholar
[26]
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377
CrossRef Google scholar
[27]
Yu G H, Xie X, Pan L J, Bao Z N, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2(2): 213–234
CrossRef Google scholar
[28]
Chen G, Liaw S L, Li B S, Xu Y, Dunwell M, Deng S G, Fan H Y, Luo H M. Microwave-assisted synthesis of hybrid CoxNi1–x(OH)2 nanosheets: tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251: 338–343
CrossRef Google scholar
[29]
Li M, Xu S H, Zhu Y P, Yang P X, Wang L W, Chu P K. Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. Journal of Alloys and Compounds, 2014, 589: 364–371
CrossRef Google scholar
[30]
Chuo H X, Gao H, Yang Q, Zhang N, Bu W B, Zhang X T. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(48): 20462–20469
CrossRef Google scholar
[31]
Ke Q Q, Guan C, Zheng M R, Hu Y T, Ho K H, Wang J. 3D hierarchical SnO2@Ni(OH)2 core–shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(18): 9538–9542
CrossRef Google scholar
[32]
Chen H, Hu L F, Yan Y, Che R C, Chen M, Wu L M. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Advanced Energy Materials, 2013, 3(12): 1636–1646
CrossRef Google scholar
[33]
Ma Q, Hu W M, Peng D C, Shen R H, Xia X H, Chen H, Chen Y X, Liu H B. Freestanding core-shell Ni(OH)2@MnO2 structure with enhanced energy density and cyclic performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 803: 866–874
CrossRef Google scholar
[34]
Chen H, Zhou S X, Wu L M. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Applied Materials & Interfaces, 2014, 6(11): 8621–8630
CrossRef Google scholar
[35]
Shi X, Key J, Ji S, Linkov V, Liu F S, Wang H, Cai H J, Wang R F. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small, 2019, 15(29): 1802861–1802870
CrossRef Google scholar
[36]
Jiang H, Li C Z, Sun T, Ma J. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chemical Communications (Cambridge), 2012, 48(20): 2606–2608
CrossRef Google scholar
[37]
Ren Q, Wang R F, Wang H, Key J L, Brett D J L, Ji S, Yin S B, Shen P K. Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(20): 7591–7595
CrossRef Google scholar
[38]
Yuan S, Ma D L, Wang S, Liu Y B, Yang X H, Cao Z Y. Hierarchical porous SnO2/Mn2O3 core/shell microspheres as advanced anode materials for lithium-ion batteries. Materials Letters, 2015, 145: 104–107
CrossRef Google scholar
[39]
Xu J, Deng Y Q, Luo Y, Mao W, Yang X J, Han Y F. Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. Journal of Catalysis, 2013, 300: 225–234
CrossRef Google scholar
[40]
Han Y F, Chen F X, Zhong Z Y, Ramesh K, Chen L, Widjaja E. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. Journal of Physical Chemistry B, 2006, 110(48): 24450–24456
CrossRef Google scholar
[41]
Yuan S, Chen W B, Zhang L, Liu Z K, Liu J Q, Liu T, Li G J, Wang Q. Nitrogen-doped graphene-buffered Mn2O3 nanocomposite anodes for fast charging and high discharge capacity lithium-ion batteries. Small, 2019, 15(50): 1903311–1903319
CrossRef Google scholar
[42]
Feng L Y, Sun J K, Liu Y H, Li X X, Ye L, Zhao L J. 3D sponge-like porous structure of Mn2O3 tiny nanosheets coated on Ni(OH)2/Mn2O3 nanosheet arrays for quasi-solid-state asymmetric supercapacitors with high performance. Chemical Engineering Journal, 2018, 339: 61–70
CrossRef Google scholar
[43]
Ramesh S, Karuppasamy K, Msolli S, Kim H S, Kim H S, Kim J H. A nanocrystalline structured NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors. New Journal of Chemistry, 2017, 41(24): 15517–15527
CrossRef Google scholar
[44]
Ma Y Y, Wang R F, Wang H, Key J, Ji S. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. Journal of Power Sources, 2015, 280: 526–532
CrossRef Google scholar
[45]
Tao P, Shao M H, Song C W, Wu S H, Cheng M R, Cui Z. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3128–3133
CrossRef Google scholar
[46]
Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry, 1985, 54(4): 603–619
CrossRef Google scholar
[47]
Tang Y F, Liu Y Y, Yu S X, Zhao Y F, Mu S C, Gao F M. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 2014, 123: 158–166
CrossRef Google scholar
[48]
Nathan T, Cloke M, Prabaharan S R S. Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. Journal of Nanomaterials, 2008, 2008: 81–88
CrossRef Google scholar
[49]
Tang Y F, Liu Y Y, Guo W C, Chen T, Wang H C, Yu S X, Gao F M. Highly oxidized graphene anchored Ni(OH)2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance. Journal of Physical Chemistry C, 2014, 118(43): 24866–24876
CrossRef Google scholar
[50]
Xiong X H, Ding D, Chen D C, Waller G, Bu Y F, Wang Z X, Liu M L. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11: 154–161
CrossRef Google scholar
[51]
Ye L, Zhao L J, Zhang H, Zhang B, Wang H Y. One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9160–9168
CrossRef Google scholar
[52]
Yu L, Zhang G Q, Yuan C Z, Lou X W. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139
CrossRef Google scholar

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 21908037, 91834301) and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2019HGBZ0147).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-021-2036-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2696 KB)

Accesses

Citations

Detail

Sections
Recommended

/