Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors
Xiqing Luo, Miaomiao Jiang, Kun Shi, Zhangxian Chen, Zeheng Yang, Weixin Zhang
Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors
For high performance supercapacitors, novel hierarchical yolk-shell a-Ni(OH)2/Mn2O3 microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique a-Ni(OH)2 based yolk-shell microstructures decorated with numerous interconnected nanosheets and the hetero-composition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH− chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the a-Ni(OH)2 microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L−1 KOH aqueous electrolyte for supercapacitors, the yolk-shell a-Ni(OH)2/Mn2O3 microspheres exhibited a considerably high specific capacitance of 2228.6 F·g−1 at 1 A·g−1 and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g−1. The proposed a-Ni(OH)2/Mn2O3 microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.
α-Ni(OH)2/Mn2O3 / yolk-shell microspheres / electrode material / high specific capacitance / supercapacitors
[1] |
Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Owusu K A, Mai L Q, Yu Y. A new view of supercapacitors: integrated supercapacitors. Advanced Energy Materials, 2019, 9(36): 1901081–1901091
CrossRef
Google scholar
|
[2] |
Yan J, Li S H, Lan B B, Wu Y C, Lee P S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Advanced Functional Materials, 2020, 30(2): 1902564–1902598
CrossRef
Google scholar
|
[3] |
Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J. Asymmetric supercapacitor electrodes and devices. Advanced Materials, 2017, 29(21): 1605336–1605365
CrossRef
Google scholar
|
[4] |
Patrice S, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854
CrossRef
Google scholar
|
[5] |
Thubsuang U, Chotirut S, Thongnok A, Promraksa A, Nisoa M, Manmuanpom N, Wongkasemjit S, Chaisuwan T. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance. Frontiers of Chemical Science and Engineering, 2020, 14(1): 1–15
CrossRef
Google scholar
|
[6] |
Bi S, Banda H, Chen M, Niu L, Chen M Y, Wu T Z, Wang J S, Wang R X, Feng J M, Chen T Y, Dincă M, Kornyshev A A, Feng G. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19(5): 552–560
CrossRef
Google scholar
|
[7] |
Choi C, Ashby D S, Butts D M, DeBlock R H, Wei Q L, Lau J, Dunn B. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews. Materials, 2020, 5(1): 5–19
CrossRef
Google scholar
|
[8] |
Mofarah S S, Adabifiroozjaei E, Yao Y, Koshy P, Lim S, Webster R, Liu X H, Nekouei R K, Cazorla C, Liu Z,
CrossRef
Google scholar
|
[9] |
Huang Y, Yang C, Deng B H, Wang C, Li Q W, Thibault C D, Huang K, Huo K F, Wu H. Nanostructured pseudocapacitors with pH-tunable electrolyte for electrochromic smart windows. Nano Energy, 2019, 66: 104200–104205
CrossRef
Google scholar
|
[10] |
Morag A, Maman N, Froumin N, Ezersky V, Rechav K, Jelinek R. Nanostructured nickel/ruthenium/ruthenium-oxide supercapacitor displaying exceptional high frequency response. Advanced Electronic Materials, 2019, 6(1): 1900844–1900852
CrossRef
Google scholar
|
[11] |
Yu X Y, Lou X W. Mixed metal sulfides for electrochemical energy storage and conversion. Advanced Energy Materials, 2018, 8(3): 1701592–1701628
CrossRef
Google scholar
|
[12] |
Kulkarni P, Nataraj S K, Balakrishna R G, Nagaraju D H, Reddy M V. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(42): 22040–22094
CrossRef
Google scholar
|
[13] |
Banerjee J, Dutta K, Kader M A, Nayak S K. An overview on the recent developments in polyaniline-based supercapacitors. Polymers for Advanced Technologies, 2019, 30(8): 1902–1921
CrossRef
Google scholar
|
[14] |
Girl S, Ghosh D, Das C K. Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Advanced Functional Materials, 2014, 24(9): 1312–1324
CrossRef
Google scholar
|
[15] |
Liu P B, Yan J, Guang Z X, Huang Y, Li X F, Huang W H. Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424: 108–130
CrossRef
Google scholar
|
[16] |
Gao B A, Li X X, Ding K, Huang C, Li Q W, Chu P K, Huo K F. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(1): 14–37
CrossRef
Google scholar
|
[17] |
Li K Z, Zhao B C, Bai J, Ma H Y, Fang Z T, Zhu X B, Sun Y P. A high-energy-density hybrid supercapacitor with P-Ni(OH)2@Co(OH)2 core-shell heterostructure and Fe2O3 nanoneedle arrays as advanced integrated electrodes. Small, 2020, 16(32): 2001974–2001982
CrossRef
Google scholar
|
[18] |
Pan Y M, Mei Z S, Yang Z H, Zhang W X, Pei B, Yao H X. Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes. Chemical Engineering Journal, 2014, 242: 397–403
CrossRef
Google scholar
|
[19] |
Yang Z H, Xu F F, Zhang W X, Mei Z S, Pei B, Zhu X. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. Journal of Power Sources, 2014, 246: 24–31
CrossRef
Google scholar
|
[20] |
Shao Z M, Fan X M, Liu X Y, Yang Z H, Wang L, Chen Z X, Zhang W X. Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765: 489–496
CrossRef
Google scholar
|
[21] |
Xu J S, Fan X M, Xia Q, Shao Z M, Pei B, Yang Z H, Chen Z X, Zhang W X. A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. Journal of Alloys and Compounds, 2016, 685: 949–956
CrossRef
Google scholar
|
[22] |
Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499
CrossRef
Google scholar
|
[23] |
Li J B, Cao W, Zhou N, Xu F, Chen N, Liu Y, Du G P. Hierarchically nanostructured Ni(OH)2-MnO2@C ternary composites derived from Ni-MOFs grown on nickel foam as high-performance integrated electrodes for hybrid supercapacitors. Electrochimica Acta, 2020, 343: 136139–136149
CrossRef
Google scholar
|
[24] |
Krishnaveni M, Suresh C M, Wu J J, Asiri A M, Anandan S, Ashokkumar M. Synthesis of 3D marigold flower-like rGO/BN/Ni(OH)2 ternary nanocomposites for supercapacitor applications. Sustainable Energy & Fuels, 2020, 4(6): 3090–3101
CrossRef
Google scholar
|
[25] |
Mohammed M M, Abd-Elrahim A, Chun D M. One-step deposition of a Ni(OH)2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor. Materials Chemistry and Physics, 2020, 244: 122701–122710
CrossRef
Google scholar
|
[26] |
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377
CrossRef
Google scholar
|
[27] |
Yu G H, Xie X, Pan L J, Bao Z N, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2(2): 213–234
CrossRef
Google scholar
|
[28] |
Chen G, Liaw S L, Li B S, Xu Y, Dunwell M, Deng S G, Fan H Y, Luo H M. Microwave-assisted synthesis of hybrid CoxNi1–x(OH)2 nanosheets: tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251: 338–343
CrossRef
Google scholar
|
[29] |
Li M, Xu S H, Zhu Y P, Yang P X, Wang L W, Chu P K. Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. Journal of Alloys and Compounds, 2014, 589: 364–371
CrossRef
Google scholar
|
[30] |
Chuo H X, Gao H, Yang Q, Zhang N, Bu W B, Zhang X T. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(48): 20462–20469
CrossRef
Google scholar
|
[31] |
Ke Q Q, Guan C, Zheng M R, Hu Y T, Ho K H, Wang J. 3D hierarchical SnO2@Ni(OH)2 core–shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(18): 9538–9542
CrossRef
Google scholar
|
[32] |
Chen H, Hu L F, Yan Y, Che R C, Chen M, Wu L M. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Advanced Energy Materials, 2013, 3(12): 1636–1646
CrossRef
Google scholar
|
[33] |
Ma Q, Hu W M, Peng D C, Shen R H, Xia X H, Chen H, Chen Y X, Liu H B. Freestanding core-shell Ni(OH)2@MnO2 structure with enhanced energy density and cyclic performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 803: 866–874
CrossRef
Google scholar
|
[34] |
Chen H, Zhou S X, Wu L M. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Applied Materials & Interfaces, 2014, 6(11): 8621–8630
CrossRef
Google scholar
|
[35] |
Shi X, Key J, Ji S, Linkov V, Liu F S, Wang H, Cai H J, Wang R F. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small, 2019, 15(29): 1802861–1802870
CrossRef
Google scholar
|
[36] |
Jiang H, Li C Z, Sun T, Ma J. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chemical Communications (Cambridge), 2012, 48(20): 2606–2608
CrossRef
Google scholar
|
[37] |
Ren Q, Wang R F, Wang H, Key J L, Brett D J L, Ji S, Yin S B, Shen P K. Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(20): 7591–7595
CrossRef
Google scholar
|
[38] |
Yuan S, Ma D L, Wang S, Liu Y B, Yang X H, Cao Z Y. Hierarchical porous SnO2/Mn2O3 core/shell microspheres as advanced anode materials for lithium-ion batteries. Materials Letters, 2015, 145: 104–107
CrossRef
Google scholar
|
[39] |
Xu J, Deng Y Q, Luo Y, Mao W, Yang X J, Han Y F. Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. Journal of Catalysis, 2013, 300: 225–234
CrossRef
Google scholar
|
[40] |
Han Y F, Chen F X, Zhong Z Y, Ramesh K, Chen L, Widjaja E. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. Journal of Physical Chemistry B, 2006, 110(48): 24450–24456
CrossRef
Google scholar
|
[41] |
Yuan S, Chen W B, Zhang L, Liu Z K, Liu J Q, Liu T, Li G J, Wang Q. Nitrogen-doped graphene-buffered Mn2O3 nanocomposite anodes for fast charging and high discharge capacity lithium-ion batteries. Small, 2019, 15(50): 1903311–1903319
CrossRef
Google scholar
|
[42] |
Feng L Y, Sun J K, Liu Y H, Li X X, Ye L, Zhao L J. 3D sponge-like porous structure of Mn2O3 tiny nanosheets coated on Ni(OH)2/Mn2O3 nanosheet arrays for quasi-solid-state asymmetric supercapacitors with high performance. Chemical Engineering Journal, 2018, 339: 61–70
CrossRef
Google scholar
|
[43] |
Ramesh S, Karuppasamy K, Msolli S, Kim H S, Kim H S, Kim J H. A nanocrystalline structured NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors. New Journal of Chemistry, 2017, 41(24): 15517–15527
CrossRef
Google scholar
|
[44] |
Ma Y Y, Wang R F, Wang H, Key J, Ji S. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. Journal of Power Sources, 2015, 280: 526–532
CrossRef
Google scholar
|
[45] |
Tao P, Shao M H, Song C W, Wu S H, Cheng M R, Cui Z. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3128–3133
CrossRef
Google scholar
|
[46] |
Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry, 1985, 54(4): 603–619
CrossRef
Google scholar
|
[47] |
Tang Y F, Liu Y Y, Yu S X, Zhao Y F, Mu S C, Gao F M. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 2014, 123: 158–166
CrossRef
Google scholar
|
[48] |
Nathan T, Cloke M, Prabaharan S R S. Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. Journal of Nanomaterials, 2008, 2008: 81–88
CrossRef
Google scholar
|
[49] |
Tang Y F, Liu Y Y, Guo W C, Chen T, Wang H C, Yu S X, Gao F M. Highly oxidized graphene anchored Ni(OH)2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance. Journal of Physical Chemistry C, 2014, 118(43): 24866–24876
CrossRef
Google scholar
|
[50] |
Xiong X H, Ding D, Chen D C, Waller G, Bu Y F, Wang Z X, Liu M L. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11: 154–161
CrossRef
Google scholar
|
[51] |
Ye L, Zhao L J, Zhang H, Zhang B, Wang H Y. One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9160–9168
CrossRef
Google scholar
|
[52] |
Yu L, Zhang G Q, Yuan C Z, Lou X W. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139
CrossRef
Google scholar
|
/
〈 | 〉 |