Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents
Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu
Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents
In this paper, we employed a facile approach to prepare flexible and porous metal-organic frameworks (MOFs) containing cellulose nanofiber (CNF) aerogels (MNCAs) through freeze-drying MOF-containing cellulose nanofiber suspensions. After coating with methyltrimethoxysilane (MTMS) by chemical vapor deposition, recycled and hydrophobic MTMS-coated MNCAs (MMNCAs) were obtained. Due to the low density (0.009 g/cm3), high porosity (97%) and good mechanical properties of the aerogel, the adsorption capacity of MMNCAs reached up to 210 g/g, which was nearly 3–5 times that of pure CNF aerogels. These prepared aerogels showed excellent oil/water selectivity and high capacity to adsorb oil and organic solvents. This kind of cellulose-based aerogel may be applicable in the field of environmental protection.
cellulose nanofibers / aerogels / metal-organic framework / oil-adsorption
[1] |
Vibhute A M, Muvvala V, Sureshan K M. A sugar-based gelator for marine oil-spill recovery. Angewandte Chemie, 2016, 128(27): 7913–7916
CrossRef
Google scholar
|
[2] |
Chapman H, Purnell K, Law R J, Kirby M F. The use of chemical dispersants to combat oil spills at sea: a review of practice and research needs in Europe. Marine Pollution Bulletin, 2007, 54(7): 827–838
CrossRef
Google scholar
|
[3] |
Kuyukina M S, Ivshina I B, Ritchkova M I, Philp J C, Cunningham C J, Christofi N. Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil and Sediment Contamination: An International Journal, 2003, 12(1): 85–99
CrossRef
Google scholar
|
[4] |
Angelova D, Uzunov I, Uzunova S, Gigova A, Minchev L. Kinetics of oil and oil products adsorption by carbonized rice husks. Chemical Engineering Journal, 2011, 172(1): 306–311
CrossRef
Google scholar
|
[5] |
Sabir S. Approach of cost-effective adsorbents for oil removal from oily water. Critical Reviews in Environmental Science and Technology, 2015, 45(17): 1916–1945
CrossRef
Google scholar
|
[6] |
Maleki H. Recent advances in aerogels for environmental remediation applications: a review. Chemical Engineering Journal, 2016, 300: 98–118
CrossRef
Google scholar
|
[7] |
Wang C H, Kim J, Tang J, Na J, Kang Y M, Kim M, Lim H, Bando Y, Li J, Yamauchi Y. Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angewandte Chemie, 2020, 59(5): 2066–2070
CrossRef
Google scholar
|
[8] |
Muhd Julkapli N, Bagheri S. Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polymers for Advanced Technologies, 2017, 28(12): 1583–1594
CrossRef
Google scholar
|
[9] |
Timo H, Fan Z, Tobias R, Andreas W, Rolf M. Nanocellulose aerogels for supporting iron catalysts and in situ formation of polyethylene nanocomposites. Advanced Functional Materials, 2017, 27(11): 1605586
CrossRef
Google scholar
|
[10] |
Li Y L, Liu Y S, Liu Y, Lai W C, Huang F, Ou A P, Qin R, Liu X Y, Wang X. Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11979–11988
CrossRef
Google scholar
|
[11] |
Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49(1): 96–105
CrossRef
Google scholar
|
[12] |
Phanthong P, Reubroycharoen P, Kongparakul S, Samart C, Wang Z D, Hao X G, Abudula A, Guan G Q. Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydrate Polymers, 2018, 190: 184–189
CrossRef
Google scholar
|
[13] |
Huang S, Wang D Y. A simple nanocellulose coating for self-cleaning upon water action: molecular design of stable surface hydrophilicity. Angewandte Chemie International Edition, 2017, 56(31): 9053–9057
CrossRef
Google scholar
|
[14] |
Jin H, Kettunen M, Laiho A, Pynnonen H, Paltakari J, Marmur A, Ikkala O, Ras H A. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir, 2011, 27(5): 1930–1934
CrossRef
Google scholar
|
[15] |
Korhonen J T, Kettunen M, Ras R H A, Ikkala O. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Applied Materials & Interfaces, 2011, 3(6): 1813–1816
CrossRef
Google scholar
|
[16] |
Liu H Z, Geng B Y, Chen Y F, Wang H Y. Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 49–66
CrossRef
Google scholar
|
[17] |
Todd H, Cranston E D. Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials, 2017, 29(11): 4609–4631
CrossRef
Google scholar
|
[18] |
Zanini M, Lavoratti A, Lazzari L K, Galiotto D, Pagnocelli M, Baldasso C, Zattera A J. Producing aerogels from silanized cellulose nanofiber suspension. Cellulose, 2017, 24(2): 769–779
CrossRef
Google scholar
|
[19] |
Zhang W N, Lu G, Cui C L, Liu Y Y, Li S Z, Yan W J, Xing C, Chi Y R, Yang Y H, Huo F G. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Advanced Materials, 2014, 26(24): 4056–4060
CrossRef
Google scholar
|
[20] |
Kaneti Y V, Dutta S, Hossain M S A, Shiddiky M J A, Tung K L, Shieh F K, Tsung C K, Wu K C W, Yamauchi Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Advanced Materials, 2017, 29(38): 1700213
CrossRef
Google scholar
|
[21] |
Jiang J, Yaghi O M. Brønsted acidity in metal-organic frameworks. Chemical Reviews, 2015, 115(14): 6966–6997
CrossRef
Google scholar
|
[22] |
Howarth A J, Liu Y Y, Li P, Li Z Y, Wang T C, Hupp J T, Farha O K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nature Reviews. Materials, 2016, 1(3): 15018
CrossRef
Google scholar
|
[23] |
Sun L, Campbell M G, Dincă M. Electrically conductive porous metal-organic frameworks. Angewandte Chemie International Edition, 2016, 55(11): 3566–3579
CrossRef
Google scholar
|
[24] |
Wang C H, Kaneti Y V, Bando Y, Lin J J, Liu C, Li J S, Yamauchi Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Materials Horizons, 2018, 5(3): 394–407
CrossRef
Google scholar
|
[25] |
Kaneti Y V, Zhang J, He Y B, Wang Z J, Tanaka S, Hossain M S A, Pan Z Z, Xiang B, Yang Q H, Yamauchi Y. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(29): 15356–15366
CrossRef
Google scholar
|
[26] |
Li H L, Eddaoudi M M, O’Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276–279
CrossRef
Google scholar
|
[27] |
Wang C H, Kim J, Tang J, Kim M, Lim H, Malgras V, You J, Xu Q, Li J S, Yamauchi Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40
CrossRef
Google scholar
|
[28] |
Hmadeh M, Lu Z, Liu Z, Gándara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F,
CrossRef
Google scholar
|
[29] |
Ma X T, Lou Y, Chen X B, Shi Z, Xu Y. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chemical Engineering Journal, 2019, 356: 227–235
CrossRef
Google scholar
|
[30] |
Matsumoto M, Kitaoka T. Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose films. Advanced Materials, 2016, 28(9): 1765– 1769
CrossRef
Google scholar
|
[31] |
Li L, Chen Q, Niu Z G, Zhou X H, Yang T, Huang W. Lanthanide metal-organic frameworks assembled from a fluorene-based ligand: selective sensing of Pb2+ and Fe3+ ions. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(9): 1900–1905
CrossRef
Google scholar
|
[32] |
Li B Y, Dong X G, Wang H, Ma D X, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z,
CrossRef
Google scholar
|
[33] |
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
CrossRef
Google scholar
|
[34] |
Gilang G, Yusuf V K, Joel H, Sauvik C, Jongbeom N, Brian Y, Nugraha N. General synthesis of hierarchical sheet/plate-like M-BDC (M= Cu, Mn, Ni, and Zr) metal-organic frameworks for electrochemical non-enzymatic glucose sensing. Chemical Science, 2020, 14: 3644–3655
|
[35] |
Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450
CrossRef
Google scholar
|
[36] |
Kandiah M, Nilsen M H, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli E A, Bonino F, Lillerud K P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22(24): 6632–6640
CrossRef
Google scholar
|
[37] |
Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 2007, 8(10): 3276–3278
CrossRef
Google scholar
|
[38] |
Zhou S K, You T T, Zhang X M, Xu F. Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation. ACS Applied Nano Materials, 2018, 1(5): 2095–2103
CrossRef
Google scholar
|
[39] |
Aghajanzadeh M, Zamani M, Molavi H, Khieri Manjili H, Danafar H, Shojaei A. Preparation of metal-organic frameworks UiO-66 for sdsorptive removal of methotrexate from aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(1): 177–186
CrossRef
Google scholar
|
[40] |
Xu Z Y, Zhou H, Jiang X D, Li J Y, Huang F. Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnology, 2017, 11(8): 929–934
CrossRef
Google scholar
|
[41] |
Xu Z Y, Jiang X D, Zhou H, Li J Y. Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)-cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose, 2018, 25(2): 1217–1227
CrossRef
Google scholar
|
[42] |
Xu Z Y, Jiang X D, Tan S C, Wu W B, Shi J T, Zhou H, Chen P. Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents. IET Nanobiotechnology, 2018, 12(4): 500–504
CrossRef
Google scholar
|
[43] |
Zhao W, Jia W P, Xu M Z, Wang J X, Li Y M, Zhang Z Y, Wang Y N, Zheng L, Li Q, Yun J N, Yan J, Wang X, Liu Z. Facile synthesis of oil adsorbent carbon microtubes by pyrolysis of plant tissues. Journal of Materials Science, 2019, 54(13): 9352–9361
CrossRef
Google scholar
|
/
〈 | 〉 |