Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications
Wei Wang, Yanying Wei, Jiang Fan, Jiahao Cai, Zong Lu, Li Ding, Haihui Wang
Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications
Two-dimensional (2D) materials have emerged as a class of promising materials to prepare high-performance 2D membranes for various separation applications. The precise control of the interlayer nanochannel/sub-nanochannel between nanosheets or the pore size of nanosheets within 2D membranes enables 2D membranes to achieve promising molecular sieving performance. To date, many 2D membranes with high permeability and high selectivity have been reported, exhibiting high separation performance. This review presents the development, progress, and recent breakthrough of different types of 2D membranes, including membranes based on porous and non-porous 2D nanosheets for various separations. Separation mechanism of 2D membranes and their fabrication methods are also reviewed. Last but not the least, challenges and future directions of 2D membranes for wide utilization are discussed in brief.
membrane separation / 2D membranes / 2D materials / nanosheet
[1] |
Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
|
[3] |
Duong D D. Adsorption Analysis: Equilibria and Kinetics. London: London Imperial College Press, 1998, 239–240
|
[4] |
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
|
[5] |
Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398–3409
|
[6] |
Shen J, Liu G, Ji Y, Liu Q, Cheng L, Guan K, Zhang M, Liu G, Xiong J, Yang J,
|
[7] |
Wang J, Chen P, Shi B, Guo W, Jaroniec M, Qiao S. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angewandte Chemie International Edition, 2018, 130(23): 6930–6934
|
[8] |
Ibrahim A, Lin Y S. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. Journal of Membrane Science, 2017, 550: 238–245
|
[9] |
Nielsen L E. Models for the permeability of filled polymer systems. Journal of Macromolecular Science: Part A—Chemistry, 1967, 1(5): 929–942
|
[10] |
Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H,
|
[11] |
Samori P, Palermo V, Feng X. Chemical approaches to 2D materials. Advanced Materials, 2016, 28(29): 6027–6029
|
[12] |
Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
|
[13] |
Nie L, Goh K, Wang Y, Lee J, Huang Y, Karahan H E, Zhou K, Guiver M D, Bae T H. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Science Advances, 2020, 6(17): eaaz9184
|
[14] |
Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn H J, Bao Y, Yu M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98
|
[15] |
Zhang M, Guan K, Ji Y, Liu G, Jin W, Xu N. Controllable ion transport by surface-charged graphene oxide membrane. Nature Communications, 2019, 10: 1253
|
[16] |
Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 129(7): 1851–1855
|
[17] |
Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9: 155
|
[18] |
Li H, Ko T J, Lee M, Chung H S, Han S S, Oh K H, Sadmani A, Kang H, Jung Y. Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination. Nano Letters, 2019, 19(8): 5194–5204
|
[19] |
Chen D, Wang W, Ying W, Guo Y, Meng D, Yan Y, Yan R, Peng X. CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(34): 16566–16573
|
[20] |
Kim D, Jeon M, Stottrup B L, Tsapatsis M. Paraxylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface. Angewandte Chemie International Edition, 2018, 130(2): 489–494
|
[21] |
Cao Z, Zeng S,Xu Z, Arvanitis A, Yang S, Gu X, Dong J. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Science Advances, 2018, 4(11): eaau8634
|
[22] |
Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie International Edition, 2017, 56(33): 9757–9761
|
[23] |
Wang X, Chi C, Zhang K, Qian Y, Gupta K M, Kang Z, Jiang J, Zhao D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8: 14460
|
[24] |
Yang H, Yang L, Wang H, Xu Z, Zhao Y, Luo Y, Nasir N, Song Y, Wu H, Pan F,
|
[25] |
Ying Y, Tong M, Ning S, Ravi S K, Peh S B, Tan S C, Pennycook S J, Zhao D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480
|
[26] |
Wang Y, Li L, Wei Y, Xue J, Chen H, Ding L, Caro J, Wang H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980
|
[27] |
Ran J, Pan T, Wu Y, Chu C, Cui P, Zhang P, Ai X, Fu C F, Yang Z, Xu T. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468
|
[28] |
Tsapatsis M. 2-Dimensional zeolites. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(7): 2374–2381
|
[29] |
Choi M, Na K, Kim J, Sakamoto Y, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
|
[30] |
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177
|
[31] |
Varoon K, Zhang X, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y,
|
[32] |
Agrawal K V, Topuz B, Jiang Z, Nguenkam K, Elyassi B, Francis L F, Tsapatsis M. Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(9): 3458–3467
|
[33] |
Pham T C, Nguyen T H, Yoon K B. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation. Angewandte Chemie, 2013, 125(33): 8855–8860
|
[34] |
Agrawal K V, Topuz B, Pham T, Thanh T, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F,
|
[35] |
Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K,
|
[36] |
Min B, Yang S, Korde A, Kwon Y H, Jones C W, Nair S. Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers. Angewandte Chemie, 2019, 131(24): 8285–8289
|
[37] |
Choi J, Lai Z, Ghosh S, Beving D E, Yan Y, Tsapatsis M. Layer-by-layer deposition of barrier and permselective c-oriented-MCM-22 silica composite films. Industrial & Engineering Chemistry Research, 2007, 46(22): 7096–7106
|
[38] |
Choi J, Tsapatsis M. MCM-22 silica selective flake nanocomposite membranes for hydrogen separations. Journal of the American Chemical Society, 2010, 132(2): 448–449
|
[39] |
Choi S, Coronas J, Jordan E, Oh W, Nair S, Onorato F, Shantz D F, Tsapatsis M. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angewandte Chemie International Edition, 2008, 47(3): 552–555
|
[40] |
Kim W, Lee J S, Bucknall D G, Koros W J, Nair S. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. Journal of Membrane Science, 2013, 441: 129–136
|
[41] |
Galve A, Sieffert D, Vispe E, Téllez C, Coronas J, Staudt C. Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. Journal of Membrane Science, 2011, 370(1-2): 131–140
|
[42] |
Castarlenas S, Gorgojo P, Casado C, Masheshwari S, Tsapatsis M, Téllez C, Coronas J. Melt compounding of swollen titanosilicate JDF-L1 with polysulfone to obtain mixed matrix membranes for H2/CH4 separation. Industrial & Engineering Chemistry Research, 2013, 52(5): 1901–1907
|
[43] |
Galve A, Sieffert D, Staudt C, Ferrando M, Güell C, Téllez C, Coronas J. Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. Journal of Membrane Science, 2013, 431: 163–170
|
[44] |
Wei X L, Pan W Y, Li X, Pan M, Huo C F, Yang R, Chao Z S. MCM-22 zeolite-induced synthesis of thin sodalite zeolite membranes. Chemistry of Materials, 2020, 32(1): 333–340
|
[45] |
Ma N, Wei J, Liao R, Tang C Y. Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. Journal of Membrane Science, 2012, 405-406: 149–157
|
[46] |
Peng Y, Yang W. 2D metal-organic framework materials for membrane-based separation. Advanced Materials Interfaces, 2020, 7(1): 1901514
|
[47] |
Jian M, Qiu R, Xia Y, Lu J, Chen Y, Gu Q, Liu R, Hu C, Qu J, Wang H,
|
[48] |
Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabres I X F X, Gascon J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55
|
[49] |
Kang Z, Peng Y, Hu Z, Qian Y, Chi C, Yeo L Y, Tee L, Zhao D. Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(41): 20801–20810
|
[50] |
Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, Zhao D. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223
|
[51] |
Yang Y, Goh K, Wang R, Bae T H. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chemical Communications, 2017, 53(30): 4254–4257
|
[52] |
Yang F, Wu M, Wang Y, Ashtiani S, Jiang H. A GO-induced assembly strategy to repair MOF nanosheet-based membrane for efficient H2/CO2 separation. ACS Applied Materials & Interfaces, 2019, 11(1): 990–997
|
[53] |
Zhong Z, Yao J, Chen R, Low Z, He M, Liu J Z, Wang H. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(30): 15715–15722
|
[54] |
Ang H, Hong L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Applied Materials & Interfaces, 2017, 9(33): 28079–28088
|
[55] |
Li Y, Liu H, Wang H, Qiu J, Zhang X. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation. Chemical Science (Cambridge), 2018, 9(17): 4132–4141
|
[56] |
Li Y, Lin L, Tu M, Nian P, Howarth A J, Farha O K, Qiu J, Zhang X. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11(4): 1850–1860
|
[57] |
Nian P, Liu H, Zhang X. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. Journal of Membrane Science, 2019, 573: 200–209
|
[58] |
Lin L C, Choi J, Grossman J C. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chemical Communications, 2015, 51(80): 14921–14924
|
[59] |
Tong M, Yang Q, Ma Q, Liu D, Zhong C. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(1): 124–131
|
[60] |
Wang Y, Li J, Yang Q, Zhong C. Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2016, 8(13): 8694–8701
|
[61] |
Yao J, Liu C, Liu X, Guo J, Zhang S, Zheng J, Li S. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864
|
[62] |
Dey K, Pal M, Rout K C, Kunjattu H S, Das A, Mukherjee R, Kharul U K, Banerjee R. Selective molecular separation by interfacially crystallized covalent organic framework thin films. Journal of the American Chemical Society, 2017, 139(37): 13083–13091
|
[63] |
Matsumoto M, Valentino L, Stiehl G M, Balch H B, Corcos A R, Wang F, Ralph D C, Mariñas B J, Dichtel W R. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem, 2018, 4(2): 308–317
|
[64] |
Fan H, Gu J, Meng H, Knebel A, Caro J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angewandte Chemie International Edition, 2018, 57(15): 4083–4087
|
[65] |
Fan H, Mundstock A, Feldhoff A, Knebel A, Gu J, Meng H, Caro J. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098
|
[66] |
Li Y, Wu Q, Guo X, Zhang M, Chen B, Wei G, Li X, Li X, Li S, Ma L. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11: 599
|
[67] |
Li F, Qu Y, Zhao M. Efficient helium separation of graphitic carbon nitride membrane. Carbon, 2015, 95: 51–57
|
[68] |
Liu Y, Xie D, Song M, Jiang L, Fu G, Liu L, Li J. Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138
|
[69] |
Wang Y, Liu L, Xue J, Hou J, Ding L, Wang H. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(6): 2181–2188
|
[70] |
Wang Y, Wu N, Wang Y, Ma H, Zhang J, Xu L, Albolkany M K, Liu B. Graphite phase carbon nitride based membrane for selective permeation. Nature Communications, 2019, 10: 2500
|
[71] |
Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490: 72–83
|
[72] |
Wang Y, Ou R, Wang H, Xu T. Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. Journal of Membrane Science, 2015, 475: 281–289
|
[73] |
Chen J, Li Z, Wang C, Wu H, Liu G. Synthesis and characterization of g-C3N4 nanosheet modified polyamide nanofiltration membranes with good permeation and antifouling properties. RSC Advances, 2016, 6(113): 112148–112157
|
[74] |
Tian Z, Wang S, Wang Y, Ma X, Cao K, Peng D, Wu X, Wu H, Jiang Z. Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. Journal of Membrane Science, 2016, 514: 15–24
|
[75] |
Zhao H, Chen S, Quan X, Yu H, Zhao H. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B: Environmental, 2016, 194: 134–140
|
[76] |
Gao X, Li Y, Yang X, Shang Y, Wang Y, Gao B, Wang Z. Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 19875–19883
|
[77] |
Wang J, Li M, Zhou S, Xue A, Zhang Y, Zhao Y, Zhong J, Zhang Q. Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation. Separation and Purification Technology, 2017, 188: 24–37
|
[78] |
Bunch J S, Verbridge S S, Alden J S, Zande A M, Parpia J M, Craighead H G, McEuen P L. Impermeable atomic membranes from graphene sheets. Nano Letters, 2008, 8: 2458–2462
|
[79] |
Cohen Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
|
[80] |
Sint K, Wang B, Král P. Selective ion passage through functionalized graphene nanopores. Journal of the American Chemical Society, 2008, 130(49): 16448–16449
|
[81] |
Jiang D, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Letters, 2009, 9: 4019–4024
|
[82] |
Hauser A W, Schwerdtfeger P. Methane-selective nanoporous graphene membranes for gas purification. Physical Chemistry Chemical Physics, 2012, 14(38): 13292–13298
|
[83] |
Sun C, Boutilier M S, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou N G. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir, 2014, 30(2): 675–682
|
[84] |
Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale, 2012, 4(17): 5477–5482
|
[85] |
Liu H, Chen Z, Dai S, Jiang D. Selectivity trend of gas separation through nanoporous graphene. Journal of Solid State Chemistry, 2015, 224: 2–6
|
[86] |
Nouri M, Ghasemzadeh K, Iulianelli A. Theoretical evaluation of graphene membrane performance for hydrogen separation using molecular dynamic simulation. Membranes, 2019, 9(9): 110
|
[87] |
Yuan Z, Misra R P, Rajan A G, Strano M S, Blankschtein D. Analytical prediction of gas permeation through graphene nanopores of varying sizes: understanding transitions across multiple transport regimes. ACS Nano, 2019, 13(10): 11809–11824
|
[88] |
Xu Y, Xu J, Yang C. Separation of diverse alkenes from C2–C4 alkanes through nanoporous graphene membranes via local size sieving. Journal of Membrane Science, 2019, 584: 227–235
|
[89] |
Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467(7312): 190–193
|
[90] |
Fischbein M D, Drndić M. Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 2008, 93(11): 113107
|
[91] |
Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J, Lee C, Park H G. Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
|
[92] |
Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 2012, 50(4): 1699–1703
|
[93] |
O’Hern S C, Boutilier M S, Idrobo J C, Song Y, Kong J, Laoui T, Atieh M, Karnik R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241
|
[94] |
Koenig S P, Wang L, Pellegrino J, Bunch J S. Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732
|
[95] |
Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
|
[96] |
Sun C, Wen B, Bai B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Science Bulletin, 2015, 60(21): 1807–1823
|
[97] |
Liu G, Jin W, Xu N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angewandte Chemie International Edition, 2016, 55(43): 13384–13397
|
[98] |
Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chemical Communications, 2010, 46(19): 3256–3258
|
[99] |
Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli C A, Passerone D. Porous graphene as an atmospheric nanofilter. Small, 2010, 6(20): 2266–2271
|
[100] |
Kidambi P R, Nguyen G D, Zhang S, Chen Q, Kong J, Warner J, Li A P, Karnik R. Facile fabrication of large-area atomically thin membranes by direct synthesis of graphene with nanoscale porosity. Advanced Materials, 2018, 30(49): 1804977
|
[101] |
Huang S, Dakhchoune M, Luo W, Oveisi E, He G, Rezaei M, Zhao J, Alexander D T L, Zuttel A, Strano M S,
|
[102] |
Wang S, Dai S, Jiang D. Continuously tunable pore size for gas separation via a bilayer nanoporous graphene membrane. ACS Applied Nano Materials, 2018, 2(1): 379–384
|
[103] |
Zhao J, He G, Huang S, Villalobos L F, Dakhchoune M, Bassas H, Agrawal K V. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation. Science Advances, 2019, 5(1): eaav1851
|
[104] |
Sun C, Zhu S, Liu M, Shen S, Bai B. Selective molecular sieving through a large graphene nanopore with surface charges. Journal of Physical Chemistry Letters, 2019, 10(22): 7188–7194
|
[105] |
Choi K, Droudian A, Wyss R M, Schlichting K P, Park H G. Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation. Science Advances, 2018, 4(11): eaau0476
|
[106] |
Yang Y, Yang X, Liang L, Gao Y, Cheng H, Li X, Zou M, Ma R, Yuan Q, Duan X. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062
|
[107] |
Lin L C, Grossman J C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nature Communications, 2015, 6: 8335
|
[108] |
Wang P, Li W, Du C, Zheng X, Sun X, Yan Y, Zhang J. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Computational Materials Science, 2017, 140: 284–289
|
[109] |
Zheng H, Zhu L, He D, Guo T, Li X, Chang X, Xue Q. Two-dimensional graphene oxide membrane for H2/CH4 separation: insights from molecular dynamics simulations. International Journal of Hydrogen Energy, 2017, 42(52): 30653–30660
|
[110] |
Li W, Zhang L, Zhang X, Zhang M, Liu T, Chen S. Atomic insight into water and ion transport in 2D interlayer nanochannels of graphene oxide membranes: implication for desalination. Journal of Membrane Science, 2020, 596: 117744
|
[111] |
Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 2012, 335(6067): 442–444
|
[112] |
Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z,
|
[113] |
Yeh C N, Raidongia K, Shao J, Yang Q H, Huang J. On the origin of the stability of graphene oxide membranes in water. Nature Chemistry, 2014, 7(2): 166–170
|
[114] |
Long Y, Wang K, Xiang G, Song K, Zhou G, Wang X. Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors. Advanced Materials, 2017, 29(16): 1606093
|
[115] |
Chen L, Huang L, Zhu J. Stitching graphene oxide sheets into a membrane at a liquid/liquid interface. Chemical Communications, 2014, 50(100): 15944–15947
|
[116] |
Liu J, Wang N, Yu L J, Karton A, Li W, Zhang W, Guo F, Hou L, Cheng Q, Jiang L,
|
[117] |
Nam Y T, Choi J, Kang K M, Kim D W, Jung H T. Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding. ACS Applied Materials & Interfaces, 2016, 8(40): 27376–27382
|
[118] |
Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology, 2013, 47(8): 3715–3723
|
[119] |
Hung W S, Tsou C H, De Guzman M, An Q F, Liu Y L, Zhang Y M, Hu C C, Lee K R, Lai J Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chemistry of Materials, 2014, 26(9): 2983–2990
|
[120] |
Jia Z, Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(8): 4405–4412
|
[121] |
Thebo K H, Qian X, Zhang Q, Chen L, Cheng H M, Ren W. Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 2018, 9: 1486
|
[122] |
Liang F, Liu Q, Zhao J, Guan K, Mao Y, Liu G, Gu X, Jin W. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(2): e16812
|
[123] |
Pan F, Li Y, Song Y, Wang M, Zhang Y, Yang H, Wang H, Jiang Z. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. Journal of Membrane Science, 2020, 595: 117486
|
[124] |
Huang L, Li Y, Zhou Q, Yuan W, Shi G. Graphene oxide membranes with tunable semipermeability in organic solvents. Advanced Materials, 2015, 27(25): 3797–3802
|
[125] |
Huang L, Chen J, Gao T, Zhang M, Li Y, Dai L, Qu L, Shi G. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration. Advanced Materials, 2016, 28(39): 8669–8674
|
[126] |
Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nature Communications, 2013, 4: 2979
|
[127] |
Wang S, Mahalingam D, Sutisna B, Nunes S P. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(19): 11673–11682
|
[128] |
Zhang M, Guan K, Shen J, Liu G, Fan Y, Jin W. Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(11): 5054–5063
|
[129] |
Dong L, Li M, Zhang S, Si X, Bai Y, Zhang C. NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions. Desalination, 2020, 476: 114227
|
[130] |
Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50(86): 13089–13092
|
[131] |
Liu Y, Yu Z, Peng Y, Shao L, Li X, Zeng H. A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane. Chemical Physics Letters, 2020, 749: 137424
|
[132] |
Gao S J, Qin H, Liu P, Jin J. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(12): 6649–6654
|
[133] |
Han Y, Jiang Y, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 2015, 7(15): 8147–8155
|
[134] |
Wei Y, Zhu Y, Jiang Y. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification. Chemical Engineering Journal, 2019, 356: 915–925
|
[135] |
Han R, Wu P. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6475–6481
|
[136] |
Yu J, Zhang Y, Chen J, Cui L, Jing W. Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane. Journal of Membrane Science, 2020, 600: 117870
|
[137] |
Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 2013, 23(29): 3693–3700
|
[138] |
Zhang P, Gong J L, Zeng G M, Song B, Cao W, Liu H Y, Huan S Y, Peng P. Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure. Journal of Membrane Science, 2019, 574: 112–123
|
[139] |
Cheng P, Chen Y, Gu Y H, Yan X, Lang W Z. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving. Journal of Membrane Science, 2019, 591: 117308
|
[140] |
Wei S, Xie Y, Xing Y, Wang L, Ye H, Xiong X, Wang S, Han K. Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 2019, 582: 414–422
|
[141] |
Liu T, Liu X, Graham N, Yu W, Sun K. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. Journal of Membrane Science, 2020, 593: 117431
|
[142] |
Kunimatsu M, Nakagawa K, Yoshioka T, Shintani T, Yasui T, Kamio E, Tsang S C E, Li J, Matsuyama H. Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117598
|
[143] |
Morelos Gomez A, Cruz Silva R, Muramatsu H, Ortiz Medina J, Araki T, Fukuyo T, Tejima S, Takeuchi K, Hayashi T, Terrones M,
|
[144] |
Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S,
|
[145] |
Dou H, Xu M, Jiang B, Wen G, Zhao L, Wang B, Yu A, Bai Z, Sun Y, Zhang L,
|
[146] |
Wen Q, Jia P, Cao L, Li J, Quan D, Wang L, Zhang Y, Lu D, Jiang L, Guo W. Electric-field-induced ionic sieving at planar graphene oxide heterojunctions for miniaturized water desalination. Advanced Materials, 2020, 32(16 ): 1903954
|
[147] |
Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
|
[148] |
Kim T W, Sahimi M, Tsotsis T T. Preparation of hydrotalcite thin films using an electrophoretic technique. Industrial & Engineering Chemistry Research, 2008, 47: 9127–9132
|
[149] |
Kim T W, Sahimi M, Tsotsis T T. The preparation and characterization of hydrotalcite thin films. Industrial & Engineering Chemistry Research, 2009, 48: 5794–5801
|
[150] |
Liu Y, Wang N, Cao Z, Caro J. Molecular sieving through interlayer galleries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1235–1238
|
[151] |
Liu Y, Wu H, Min L, Song S, Yang L, Ren Y, Wu Y, Zhao R, Wang H, Jiang Z. 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture. Journal of Membrane Science, 2020, 598: 117663
|
[152] |
Liu Y, Wang N, Diestel L, Steinbach F, Caro J. MOF membrane synthesis in the confined space of a vertically aligned LDH network. Chemical Communications, 2014, 50(32): 4225–4227
|
[153] |
Liu Y, Wang N, Pan J H, Steinbach F, Caro J. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. Journal of the American Chemical Society, 2014, 136(41): 14353–14356
|
[154] |
Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586
|
[155] |
Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. Journal of the American Chemical Society, 2020, 142(15): 6872–6877
|
[156] |
Lu P, Liang S, Qiu L, Gao Y, Wang Q. Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates. Journal of Membrane Science, 2016, 504: 196–205
|
[157] |
Lu P, Liang S, Zhou T, Mei X, Zhang Y, Zhang C, Umar A, Wang Q. Layered double hydroxide/graphene oxide hybrid incorporated polysulfone substrate for thin-film nanocomposite forward osmosis membranes. RSC Advances, 2016, 6(61): 56599–56609
|
[158] |
Zhao Y, Li N, Yuan F, Zhang H, Xia S. Preparation and characterization of hydrophilic and antifouling poly(ether sulfone) ultrafiltration membranes modified with Zn-Al layered double hydroxides. Journal of Applied Polymer Science, 2016, 133(39): 43988–43998
|
[159] |
Arefi Oskoui S, Khataee A, Vatanpour V. Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes. Separation and Purification Technology, 2017, 184: 97–118
|
[160] |
Wang N, Huang Z, Li X, Li J, Ji S, An Q F. Tuning molecular sieving channels of layered double hydroxides membrane with direct intercalation of amino acids. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(35): 17148–17155
|
[161] |
Ang E H, Velioğlu S, Chew J W. Tunable affinity separation enables ultrafast solvent permeation through layered double hydroxide membranes. Journal of Membrane Science, 2019, 591: 117318
|
[162] |
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253
|
[163] |
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992–1005
|
[164] |
Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031
|
[165] |
Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, Qiao Z, Wang H. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
|
[166] |
Wu X, Cui X, Wu W, Wang J, Li Y, Jiang Z. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes. Angewandte Chemie International Edition, 2019, 58(51): 18524–18529
|
[167] |
Xing Y, Akonkwa G, Liu Z, Ye H, Han K. Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Applied Nano Materials, 2020, 3(2): 1526–1534
|
[168] |
Ding L, Li L, Liu Y, Wu Y, Lu Z, Deng J, Wei Y, Caro J, Wang H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability, 2020, 3: 296–302
|
[169] |
Lu Z, Wei Y, Deng J, Ding L, Li Z K, Wang H. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13(9): 10535–10544
|
[170] |
Wu X, Hao L, Zhang J, Zhang X, Wang J, Liu J. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515: 175–188
|
[171] |
Hao L, Zhang H, Wu X, Zhang J, Wang J, Li Y. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Composites. Part A, Applied Science and Manufacturing, 2017, 100: 139–149
|
[172] |
Shamsabadi A A, Isfahani A P, Salestan S K, Rahimpour A, Ghalei B, Sivaniah E, Soroush M. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx
|
[173] |
Gao L, Li C, Huang W, Mei S, Lin H, Ou Q, Zhang Y, Guo J, Zhang F, Xu S,
|
[174] |
Heiranian M, Farimani A B, Aluru N R. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6: 8616
|
[175] |
Kou J, Yao J, Wu L, Zhou X, Lu H, Wu F, Fan J. Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Physical Chemistry Chemical Physics, 2016, 18(32): 22210–22216
|
[176] |
Li W, Yang Y, Weber J K, Zhang G, Zhou R. Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano, 2016, 10(2): 1829–1835
|
[177] |
Sun L, Huang H, Peng X. Laminar MoS2 membranes for molecule separation. Chemical Communications, 2013, 49(91): 10718–10720
|
[178] |
Sun L, Ying Y, Huang H, Song Z, Mao Y, Xu Z, Peng X. Ultrafast molecule separation through layered WS2 nanosheet membranes. ACS Nano, 2014, 8(6): 6304–6311
|
[179] |
Hirunpinyopas W, Prestat E, Worrall S D, Haigh S J, Dryfe R A W, Bissett M A. Desalination and nanofiltration through functionalized laminar MoS2 Membranes. ACS Nano, 2017, 11(11): 11082–11090
|
[180] |
Ang E H, Chew J W. Two-dimensional transition-metal dichalcogenide-based membrane for ultrafast solvent permeation. Chemistry of Materials, 2019, 31(24): 10002–10007
|
[181] |
Ries L, Petit E, Michel T, Diogo C C, Gervais C, Salameh C, Bechelany M, Balme S, Miele P, Onofrio N,
|
[182] |
Hu W, Cui X, Xiang L, Gong L, Zhang L, Gao M, Wang W, Zhang J, Liu F, Yan B,
|
[183] |
Wang D, Wang Z, Wang L, Hu L, Jin J. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation. Nanoscale, 2015, 7(42): 17649–17652
|
[184] |
AchariA, Sahana S, Eswaramoorthy M. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency. Energy & Environmental Science, 2016, 9(4): 1224–1228
|
[185] |
Shen Y, Wang H, Zhang X, Zhang Y. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 2016, 8(35): 23371–23378
|
[186] |
Chen D, Ying W, Guo Y, Ying Y, Peng X. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane. ACS Applied Materials & Interfaces, 2017, 9(50): 44251–44257
|
/
〈 | 〉 |