Block copolymers as efficient cathode interlayer materials for organic solar cells
Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao
Block copolymers as efficient cathode interlayer materials for organic solar cells
Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors. In addition to improving the efficiency, stability and processability issues are major challenges. Herein, we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications. The block copolymer coated cathodes display high optical transmittance and low work function. Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks. Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widely-applied ZnO counterparts. Furthermore, no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.
organic solar cell / block copolymer / cathode interlayer
[1] |
Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1(2): 1–7
|
[2] |
Hou J, Inganäs O, Friend R H, Gao F. Organic solar cells based on non-fullerene acceptors. Nature Materials, 2018, 17(2): 119–128
|
[3] |
Chen H, Hu D, Yang Q, Gao J, Fu J, Yang K, He H, Chen S, Kan Z, Duan T,
|
[4] |
Lee W, Jeong S, Lee C, Han G, Cho C, Lee J Y, Kim B J. Organic photovoltaics: self-organization of polymer additive, poly(2-vinylpyridine) via one-step solution processing to enhance the efficiency and stability of polymer solar cells. Advanced Energy Materials, 2017, 7(17): 1602812
|
[5] |
Yang K, Fu J, Hu L, Xiong Z, Li M, Wei X, Xiao Z, Lu S, Sun K. Impact of ZnO photoluminescence on organic photovoltaic performance. ACS Applied Materials & Interfaces, 2018, 10(46): 39962–39969
|
[6] |
Seh Z W, Fredrickson K D, Anasori B, Kibsgaard J, Strickler A L, Lukatskaya M R, Gogotsi Y, Jaramillo T F, Vojvodic A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 2016, 1(3): 589–594
|
[7] |
Zhang X, Johansson E M. Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(1): 303–310
|
[8] |
You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q,
|
[9] |
Small C E, Chen S, Subbiah J, Amb C M, Tsang S W, Lai T H, Reynolds J R, So F. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nature Photonics, 2012, 6(2): 115–120
|
[10] |
Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Würthner F, Ma Y. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. Journal of the American Chemical Society, 2015, 137(22): 6995–6998
|
[11] |
Tan W Y, Wang R, Li M, Liu G, Chen P, Li X C, Lu S M, Zhu H L, Peng Q M, Zhu X H,
|
[12] |
Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W,
|
[13] |
Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M,
|
[14] |
He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell T P, Cao Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9(3): 174–179
|
[15] |
Yang B, Zhang S, Li S, Yao H, Li W, Hou J. A self-organized poly (vinylpyrrolidone)-based cathode interlayer in inverted fullerene-free organic solar cells. Advanced Materials, 2019, 31(2): 1804657
|
[16] |
Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J,
|
[17] |
Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546
|
[18] |
Ge J, Yin Y. Responsive photonic crystals. Angewandte Chemie International Edition, 2011, 50(7): 1492–1522
|
[19] |
Hawker C J, Bosman A W, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chemical Reviews, 2001, 101(12): 3661–3688
|
[20] |
Hawker C J. Molecular weight control by a “living” free-radical polymerization process. Journal of the American Chemical Society, 1994, 116(24): 11185–11186
|
[21] |
Zhang C, Bates M W, Geng Z, Levi A E, Vigil D, Barbon S M, Loman T, Delaney K T, Fredrickson G H, Bates C M,
|
[22] |
Cai W, Xu D, Qian L, Wei J, Xiao C, Qian L, Lu Z Y, Cui S. Force-induced transition of p-p stacking in a single polystyrene chain. Journal of the American Chemical Society, 2019, 141(24): 9500–9503
|
[23] |
Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nature Nanotechnology, 2011, 6(9): 534–534
|
[24] |
Hu L, Fu J, Yang K, Xiong Z, Wang M, Yang B, Wang H, Tang X, Zang Z, Li M,
|
[25] |
Li W, Ye L, Li S, Yao H, Ade H, Hou J. A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor. Advanced Materials, 2018, 30(16): 1707170
|
[26] |
Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, (11): 864–868
|
[27] |
Aqoma H, Park S, Park H Y, Hadmojo W T, Oh S H, Nho S, Kim D H, Seo J, Park S, Ryu D Y,
|
[28] |
Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y. High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Advanced Energy Materials, 2018, 8(5): 1701683
|
[29] |
Sun Y, Seo J H, Takacs C J, Seifter J, Heeger A J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Advanced Materials, 2011, 23(14): 1679–1683
|
[30] |
Fu J, Chen S, Yang K, Jung S, Lv J, Lan L, Chen H, Hu D, Yang Q, Duan T,
|
[31] |
Dong X, Yang K, Tang H, Hu D, Chen S, Zhang J, Kan Z, Duan T, Hu C, Dai X,
|
/
〈 | 〉 |