Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures

Daohui Zhao , Huang Chen , Yuqing Wang , Bei Li , Chongxiong Duan , Zhixian Li , Libo Li

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 922 -934.

PDF (2577KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 922 -934. DOI: 10.1007/s11705-020-2004-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures

Author information +
History +
PDF (2577KB)

Abstract

The emergence of MoS2 nanopores has provided a new avenue for high performance DNA sequencing, which is critical for modern chemical/biological research and applications. Herein, molecular dynamics simulations were performed to design a conceptual device to sequence DNA with MoS2 nanopores of different structures (e.g., pore rim contained Mo atoms only, S atoms only, or both Mo and S atoms), where various unfolded single-stranded DNAs (ssDNAs) translocated through the nanopores driven by transmembrane bias; the sequence content was identified by the associating ionic current. All ssDNAs adsorbed onto the MoS2 surface and translocated through the nanopores by transmembrane electric field in a stepwise manner, where the pause between two permeation events was long enough for the DNA fragments in the nanopore to produce well-defined ionic blockage current to deduce the DNA’s base sequence. The transmembrane bias and DNA-MoS2 interaction could regulate the speed of the translocation process. Furthermore, the structure (atom constitution of the nanopore rim) of the nanopore considerably regulated both the translocate process and the ionic current. Thus, MoS2 nanopores could be employed to sequence DNA with the flexibility to regulate the translocation process and ionic current to yield the optimal sequencing performance.

Graphical abstract

Keywords

DNA sequencing / MoS2 / molecular dynamics simulation / nanopore / ionic current

Cite this article

Download citation ▾
Daohui Zhao, Huang Chen, Yuqing Wang, Bei Li, Chongxiong Duan, Zhixian Li, Libo Li. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures. Front. Chem. Sci. Eng., 2021, 15(4): 922-934 DOI:10.1007/s11705-020-2004-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ying Y L, Long Y T. Nanopore-based single-biomolecule interfaces: from information to knowledge. Journal of the American Chemical Society, 2019, 141(40): 15720–15729

[2]

Ameur A, Kloosterman W P, Hestand M S. Single-molecule sequencing: towards clinical applications. Trends in Biotechnology, 2019, 37(1): 72–85

[3]

Varongchayakul N, Song J, Meller A, Grinstaff M W. Single-molecule protein sensing in a nanopore: a tutorial. Chemical Society Reviews, 2018, 47(23): 8512–8524

[4]

Keyser U F. Enhancing nanopore sensing with DNA nanotechnology. Nature Nanotechnology, 2016, 11(2): 106–108

[5]

Shi W, Friedman A K, Baker L A. Nanopore sensing. Analytical Chemistry, 2017, 89(1): 157–188

[6]

Ying Y, Gao R, Hu Y, Long Y. Electrochemical confinement effects for innovating new nanopore sensing mechanisms. Small Methods, 2018, 2(6): 1700390

[7]

Cao C, Ying Y L, Hu Z L, Liao D F, Tian H, Long Y T. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nature Nanotechnology, 2016, 11(8): 713–718

[8]

Cao C, Liao D F, Yu J, Tian H, Long Y T. Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nature Protocols, 2017, 12(9): 1901–1911

[9]

Soni G V, Dekker C. Detection of nucleosomal substructures using solid-state nanopores. Nano Letters, 2012, 12(6): 3180–3186

[10]

Li J, Tang Z P, Hu R, Fu Q, Yan E F, Wang S Y, Guo P X, Zhao Q, Yu D P. Probing surface hydrophobicity of individual protein at single-molecule resolution using solid-state nanopores. Science China Materials, 2015, 58(6): 455–466

[11]

Lee K, Park K B, Kim H J, Yu J S, Chae H, Kim H M, Kim K B. Recent progress in solid-state nanopores. Advanced Materials, 2018, 30(42): e1704680

[12]

Hu R, Zhu H. Graphene-based membranes for organic solvent nanofiltration. Science China Materials, 2018, 61(3): 429–431

[13]

Siwy Z S, Davenport M. Graphene opens up to DNA. Nature Nanotechnology, 2010, 5(10): 697–698

[14]

Branton D, Deamer D W, Marziali A, Bayley H, Benner S A, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, . The potential and challenges of nanopore sequencing. Nature Biotechnology, 2008, 26(10): 1146–1153

[15]

Schneider G F, Kowalczyk S W, Calado V E, Pandraud G, Zandbergen H W, Vandersypen L M, Dekker C. DNA translocation through graphene nanopores. Nano Letters, 2010, 10(8): 3163–3167

[16]

Wilson J, Sloman L, He Z, Aksimentiev A. Graphene nanopores for protein sequencing. Advanced Functional Materials, 2016, 26(27): 4830–4838

[17]

Heerema S J, Dekker C. Graphene nanodevices for DNA sequencing. Nature Nanotechnology, 2016, 11(2): 127–136

[18]

Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotechnology, 2013, 8(12): 939–945

[19]

Liu K, Feng J, Kis A, Radenovic A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano, 2014, 8(3): 2504–2511

[20]

Farimani A B, Min K, Aluru N R. DNA base detection using a single-layer MoS2. ACS Nano, 2014, 8(8): 7914–7922

[21]

Feng J, Liu K, Bulushev R D, Khlybov S, Dumcenco D, Kis A, Radenovic A. Identification of single nucleotides in MoS2 nanopores. Nature Nanotechnology, 2015, 10(12): 1070–1076

[22]

Arjmandi-Tash H, Belyaeva L A, Schneider G F. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond. Chemical Society Reviews, 2016, 45(3): 476–493

[23]

Husale B S, Sahoo S, Radenovic A, Traversi F, Annibale P, Kis A. ssDNA binding reveals the atomic structure of graphene. Langmuir, 2010, 26(23): 18078–18082

[24]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150

[25]

Feng J, Liu K, Graf M, Lihter M, Bulushev R D, Dumcenco D, Alexander D T, Krasnozhon D, Vuletic T, Kis A, Radenovic A. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Letters, 2015, 15(5): 3431–3438

[26]

Heiranian M, Farimani A B, Aluru N R. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6(1): 8616

[27]

Heckl W M, Smith D P, Binnig G, Klagges H, Hänsch T W, Maddocks J. Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(18): 8003–8005

[28]

Liang L, Shen J W, Zhang Z, Wang Q. DNA sequencing by two-dimensional materials: as theoretical modeling meets experiments. Biosensors & Bioelectronics, 2017, 89(Pt 1): 280–292

[29]

Sathe C, Zou X Q, Leburton J P, Schulten K. Computational investigation of DNA detection using graphene nanopores. ACS Nano, 2011, 5(11): 8842–8851

[30]

Chen H, Li L, Zhang T, Qiao Z W, Tang J, Zhou J. Protein translocation through a MoS2 nanopore: a molecular dynamics study. Journal of Physical Chemistry C, 2018, 122(4): 2070–2080

[31]

Xu Z, Zhang S, Weber J K, Luan B, Zhou R, Li J. Sequential protein unfolding through a carbon nanotube pore. Nanoscale, 2016, 8(24): 12143–12151

[32]

Luan B, Zhou R. Spontaneous transport of single-stranded DNA through graphene-MoS2 heterostructure nanopores. ACS Nano, 2018, 12(4): 3886–3891

[33]

Heerema S J, Schneider G F, Rozemuller M, Vicarelli L, Zandbergen H W, Dekker C. 1/f noise in graphene nanopores. Nanotechnology, 2015, 26(7): 074001

[34]

Zhou W Q, Qiu H, Guo Y F, Guo W L. Molecular insights into distinct detection properties of a-hemolysin, MspA, CsgG, and aerolysin nanopore sensors. Journal of Physical Chemistry B, 2020, 124(9): 1611–1618

[35]

Lin Z, Chen H, Dong J, Zhao D, Li L. Nanopore-based biomolecular detection. Progress in Chemistry, 2020, 32(5): 562–580 (in Chinese)

[36]

Deng S, Hu H, Zhuang G, Zhong X, Wang J. A strain-controlled C2N monolayer membrane for gas separation in PEMFC application. Applied Surface Science, 2018, 441: 408–414

[37]

Cao L, Ren H, Miao J, Guo W, Li Y, Li G. Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions. Frontiers of Chemical Science and Engineering, 2016, 10(2): 203–212

[38]

Yuan L, Wu H, Zhao Y, Qin X, Li Y. Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis. Frontiers of Chemical Science and Engineering, 2019, 13(1): 133–139

[39]

Liang L J, Cui P, Wang Q, Wu T, Agren H, Tu Y Q. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Advances, 2013, 3(7): 2445–2453

[40]

Hanwell M D, Curtis D E, Lonie D C, Vandermeersch T, Zurek E, Hutchison G R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 2012, 4(1): 17

[41]

Liang L, Hu W, Xue Z, Shen J. Theoretical study on the interaction of nucleotides on two-dimensional atomically thin graphene and molybdenum disulfide. FlatChem, 2017, 2: 8–14

[42]

Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 1983, 79(2): 926–935

[43]

Hess B, Kutzner C, Van Der Spoel D, Lindahl E. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4(3): 435–447

[44]

MacKerell A D Jr, Bashford D, Bellott M, Dunbrack R L Jr, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, . All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 1998, 102(18): 3586–3616

[45]

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics & Modelling, 1996, 14(1): 33–38

[46]

Feng J, Graf M, Liu K, Ovchinnikov D, Dumcenco D, Heiranian M, Nandigana V, Aluru N R, Kis A, Radenovic A. Single-layer MoS2 nanopores as nanopower generators. Nature, 2016, 536(7615): 197–200

[47]

Hess B, Bekker H, Berendsen H J, Fraaije J G. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 1997, 18(12): 1463–1472

[48]

Miyamoto S, Kollman P A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 1992, 13(8): 952–962

[49]

Qiu H, Sarathy A, Schulten K, Leburton J P. Detection and mapping of DNA methylation with 2D material nanopores. npj 2D Materials and Applications, 2017, 1(3): 1–8

[50]

Allen M P, Tildesley D J. Computer Simulation of Liquids. 1st ed. Oxford, UK: Clarendon Press, 1987, 385–386

[51]

Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 1993, 98(12): 10089–10092

[52]

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. Journal of Chemical Physics, 2007, 126(1): 014101

[53]

Berendsen H J C, Postma J P M, Van Gunsteren W F, DiNola A, Haak J R. Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 1984, 81(8): 3684–3690

[54]

Cheng A, Merz K M. Application of the NoséHoover chain algorithm to the study of protein dynamics. Journal of Physical Chemistry, 1996, 100(5): 1927–1937

[55]

Li L B, Duan Y F, Liao S W, Ke Q, Qiao Z W, Wei Y Y. Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386: 123945

[56]

Li L, Vorobyov I, Allen T W. Potential of mean force and pKa profile calculation for a lipid membrane-exposed arginine side chain. Journal of Physical Chemistry B, 2008, 112(32): 9574–9587

[57]

Li L B, Zhang T, Duan Y F, Wei Y Y, Dong C J, Ding L, Qiao Z W, Wang H H. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742

[58]

Zhao D, Li L, He D, Zhou J. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene. Applied Surface Science, 2016, 377: 324–334

[59]

Barati Farimani A, Dibaeinia P, Aluru N R. DNA origami-graphene hybrid nanopore for DNA detection. ACS Applied Materials & Interfaces, 2017, 9(1): 92–100

[60]

Balasubramanian R, Pal S, Joshi H, Rao A, Naik A, Varma M, Chakraborty B, Maiti P K. DNA translocation through hybrid bilayer nanopores. Journal of Physical Chemistry C, 2019, 123(18): 11908–11916

[61]

Qiu H, Sarathy A, Leburton J P, Schulten K. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores. Nano Letters, 2015, 15(12): 8322–8330

[62]

Chu J, Gonzalez Lopez M, Cockroft S L, Amorin M, Ghadiri M R. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. Angewandte Chemie International Edition, 2010, 49(52): 10106–10109

[63]

Ling Y, Gu Z, Kang S, Luo J, Zhou R. Structural damage of a b-sheet protein upon adsorption onto molybdenum disulfide nanotubes. Journal of Physical Chemistry C, 2016, 120(12): 6796–6803

[64]

Zhang J, Wu S, Ma L, Wu P, Liu J. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Research, 2020, 13(2): 455–460

[65]

Xu Y, Wang H, Chen B, Liu H, Zhao Y. Emerging barcode particles for multiplex bioassays. Science China Materials, 2019, 62(3): 289–324

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2577KB)

5683

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/