CO2 capture using membrane contactors: a systematic literature review
Sanaa Hafeez, Tayeba Safdar, Elena Pallari, George Manos, Elsa Aristodemou, Zhien Zhang, S. M. Al-Salem, Achilleas Constantinou
CO2 capture using membrane contactors: a systematic literature review
With fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review of the literature has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2.
CO2 capture / preferred reporting items for systematic reviews and meta-analyses / membrane contactor / absorbent
[1] |
Schiffer H W, Kober T, Panos E. World energy council’s global energy scenarios to 2060. Magazine for Energy Industry, 2018, 42(2): 91–102
CrossRef
Google scholar
|
[2] |
Johansson T B, Patwardhan A P, Nakićenović N, Gomez Echeverri L. Global Energy Assessment: Toward A Sustainable Future. Cambridge UK and New York, Laxenburg, Austria: Cambridge University Press, and the International Institute for Applied Systems Analysis, 2012, 99–1257
|
[3] |
Carapellucci R, Milazzo A. Membrane systems for CO2 capture and their integration with gas turbine plants. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2003, 217(5): 505–517
CrossRef
Google scholar
|
[4] |
Cox P M, Betts R A, Jones C D, Spall S A, Totterdell I J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184–187
CrossRef
Google scholar
|
[5] |
Koytsoumpa E I, Bergins C, Kakaras E. The CO2 economy: review of CO2 capture and reuse technologies. Journal of Supercritical Fluids, 2018, 132: 3–16
CrossRef
Google scholar
|
[6] |
Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J, Rahiala S, Hyppänen T, Mletzko J, Kather A, Santos S. Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40: 55–125
CrossRef
Google scholar
|
[7] |
Jansen D, Gazzani M, Manzolini G, Van Dijk E, Carbo M. Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2015, 40: 167–187
CrossRef
Google scholar
|
[8] |
Working Group III of the Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage. Metz B, Davidson O, De Coninck H, eds. New York: Cambridge University Press, 2005, 431
|
[9] |
Wang Y, Zhao L, Otto A, Robinius M, Stolten D. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 2017, 114: 650–665
CrossRef
Google scholar
|
[10] |
Nagy E. Basic Equations of Mass Transport Through A Membrane Layer. Amsterdam: Elsevier, 2018, 11–87
|
[11] |
Khulbe K, Matsuura T. Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 2018, 8(1): 19
CrossRef
Google scholar
|
[12] |
Luis P, van Gerven T, van der Bruggen B. Recent developments in membrane-based technologies for CO2 capture. Progress in Energy and Combustion Science, 2012, 38(3): 419–448
CrossRef
Google scholar
|
[13] |
Hafeez S, Al-Salem S, Constantinou A. Membrane reactors for renewable fuel production and their environmental benefits, in membranes for environmental applications. Vol. 42. Switzerland: Springer, 2020, 383–411
|
[14] |
Li J L, Chen B H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Separation and Purification Technology, 2005, 41(2): 109–122
CrossRef
Google scholar
|
[15] |
Sun X, Constantinou A, Gavriilidis A. Stripping of acetone from isopropanol solution with membrane and mesh gasliquid contactors. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 991–997
CrossRef
Google scholar
|
[16] |
Constantinou A, Ghiotto F, Lam K F, Gavriilidis A. Stripping of acetone from water with microfabricated and membrane gasliquid contactors. Analyst (London), 2014, 139(1): 266–272
CrossRef
Google scholar
|
[17] |
Ilyas M, Ahmad W, Khan H, Yousaf S, Khan K, Nazir S. Plastic waste as a significant threat to environment—a systematic literature review. Reviews on Environmental Health, 2018, 33(4): 383–406
CrossRef
Google scholar
|
[18] |
Favre E. Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1-2): 50–59
CrossRef
Google scholar
|
[19] |
Baltus R E, Counce R M, Culbertson B H, Luo H, DePaoli D W, Dai S, Duckworth D C. Examination of the potential of ionic liquids for gas separations. Separation Science and Technology, 2005, 40(1-3): 525–541
CrossRef
Google scholar
|
[20] |
Yan S P, Fang M X, Zhang W F, Wang S Y, Xu Z K, Luo Z Y, Cen K F. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Processing Technology, 2007, 88(5): 501–511
CrossRef
Google scholar
|
[21] |
Langevin D, Pinoche M, Se E, Me M, Roux R. CO2 facilitated transport through functionalized cation-exchange membranes. Journal of Membrane Science, 1993, 82(1-2): 51–63
CrossRef
Google scholar
|
[22] |
Li K, Teo W K. Use of permeation and absorption methods for CO2 removal in hollow fibre membrane modules. Separation and Purification Technology, 1998, 13(1): 79–88
CrossRef
Google scholar
|
[23] |
Suzuki H, Tanaka K, Kita H, Okamoto K, Hoshino H, Yoshinaga T, Kusuki Y. Preparation of composite hollow fiber membranes of poly(ethylene oxide)-containing polyimide and their CO2/N2 separation properties. Journal of Membrane Science, 1998, 146(1): 31–37
CrossRef
Google scholar
|
[24] |
Tokuda Y, Fujisawa E, Okabayashi N, Matsumiya N, Takagi K, Mano H, Haraya K, Sato M. Development of hollow fiber membranes for CO2 separation. Energy Conversion and Management, 1997, 38: S111–S116
CrossRef
Google scholar
|
[25] |
Gong Y, Wang Z, Wang S. Experiments and simulation of CO2 removal by mixed amines in a hollow fiber membrane module. Chemical Engineering and Processing: Process Intensification, 2006, 45(8): 652–660
CrossRef
Google scholar
|
[26] |
Ismail A F, Yaacob N. Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO2/CH4 gas separation system. Journal of Membrane Science, 2006, 275(1-2): 151–165
CrossRef
Google scholar
|
[27] |
Kapantaidakis G, Koops G, Wessling M, Kaldis S, Sakellaropoulos G. CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(7): 1702–1711
CrossRef
Google scholar
|
[28] |
Dae-Hwan L, Hyung-Taek K. Simulation study of CO2 separation process by using hollow fiber membrane. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 2004, 49(2): 829–830
|
[29] |
Lee Y, Noble R D, Yeom B Y, Park Y I, Lee K H. Analysis of CO2 removal by hollow fiber membrane contactors. Journal of Membrane Science, 2001, 194(1): 57–67
CrossRef
Google scholar
|
[30] |
Liu L, Chakma A, Feng X. CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite membranes. Industrial & Engineering Chemistry Research, 2005, 44(17): 6874–6882
CrossRef
Google scholar
|
[31] |
Qin J J, Chung T S, Cao C, Vora R. Effect of temperature on intrinsic permeation properties of 6FDA-Durene/1,3-phenylenediamine (mPDA) copolyimide and fabrication of its hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science, 2005, 250(1-2): 95–103
CrossRef
Google scholar
|
[32] |
Teramoto M, Kitada S, Ohnishi N, Matsuyama H, Matsumiya N. Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. Journal of Membrane Science, 2004, 234(1-2): 83–94
CrossRef
Google scholar
|
[33] |
Wang R, Li D, Liang D. Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 849–856
CrossRef
Google scholar
|
[34] |
Wang R, Zhang H, Feron P, Liang D. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Separation and Purification Technology, 2005, 46(1-2): 33–40
CrossRef
Google scholar
|
[35] |
Shim H M, Lee J S, Wang H Y, Choi S H, Kim J H, Kim H T. Modeling and economic analysis of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2007, 24(3): 537–541
CrossRef
Google scholar
|
[36] |
Zhang H Y, Wang R, Liang D T, Tay J H. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. Journal of Membrane Science, 2006, 279(1-2): 301–310
CrossRef
Google scholar
|
[37] |
Al Marzouqi M, El Naas M H, Marzouk S A, Abdullatif N. Modeling of chemical absorption of CO2 in membrane contactors. Separation and Purification Technology, 2008, 62(3): 499–506
CrossRef
Google scholar
|
[38] |
Al Marzouqi M H, El Naas M H, Marzouk S A, Al Zarooni M A, Abdullatif N, Faiz R. Modeling of CO2 absorption in membrane contactors. Separation and Purification Technology, 2008, 59(3): 286–293
CrossRef
Google scholar
|
[39] |
El Naas M H, Al Marzouqi M, Marzouk S A, Abdullatif N. Evaluation of the removal of CO2 using membrane contactors: membrane wettability. Journal of Membrane Science, 2010, 350(1-2): 410–416
CrossRef
Google scholar
|
[40] |
Faiz R, Al Marzouqi M. Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors. Journal of Membrane Science, 2009, 342(1-2): 269–278
CrossRef
Google scholar
|
[41] |
Ji P, Cao Y, Zhao H, Kang G, Jie X, Liu D, Liu J, Yuan Q. Preparation of hollow fiber poly (N,N-dimethylaminoethyl methacrylate)-poly(ethylene glycol methyl ether methyl acrylate)/polysulfone composite membranes for CO2/N2 separation. Journal of Membrane Science, 2009, 342(1-2): 190–197
CrossRef
Google scholar
|
[42] |
Keshavarz P, Fathikalajahi J, Ayatollahi S. Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. Journal of Hazardous Materials, 2008, 152(3): 1237–1247
CrossRef
Google scholar
|
[43] |
Kumar A, Yuan X, Sahu A K, Dewulf J, Ergas S J, Van Langenhove H. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(3): 387–394
CrossRef
Google scholar
|
[44] |
Lu J G, Ji Y, Zhang H, Chen M D. CO2 capture using activated amino acid salt solutions in a membrane contactor. Separation Science and Technology, 2010, 45(9): 1240–1251
CrossRef
Google scholar
|
[45] |
Lu J G, Zheng Y F, Cheng M D. Membrane contactor for CO2 absorption applying amino-acid salt solutions. Desalination, 2009, 249(2): 498–502
CrossRef
Google scholar
|
[46] |
Mansourizadeh A, Ismail A F. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal, 2010, 165(3): 980–988
CrossRef
Google scholar
|
[47] |
Mansourizadeh A, Ismail A F, Abdullah M, Ng B. Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives. Journal of Membrane Science, 2010, 355(1-2): 200–207
CrossRef
Google scholar
|
[48] |
Mansourizadeh A, Ismail A F, Matsuura T. Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. Journal of Membrane Science, 2010, 353(1-2): 192–200
CrossRef
Google scholar
|
[49] |
Marzouk S A, Al-Marzouqi M H, El-Naas M H, Abdullatif N, Ismail Z M. Removal of carbon dioxide from pressurized CO2CH4 gas mixture using hollow fiber membrane contactors. Journal of Membrane Science, 2010, 351(1-2): 21–27
CrossRef
Google scholar
|
[50] |
Sandru M, Kim T J, Hägg M B. High molecular fixed-site-carrier PVAm membrane for CO2 capture. Desalination, 2009, 240(1-3): 298–300
CrossRef
Google scholar
|
[51] |
Simons K, Nijmeijer K, Wessling M. Gasliquid membrane contactors for CO2 removal. Journal of Membrane Science, 2009, 340(1-2): 214–220
CrossRef
Google scholar
|
[52] |
Yan S, Fang M, Zhang W, Zhong W, Luo Z, Cen K. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Conversion and Management, 2008, 49(11): 3188–3197
CrossRef
Google scholar
|
[53] |
Zhang H Y, Wang R, Liang D T, Tay J H. Theoretical and experimental studies of membrane wetting in the membrane gasliquid contacting process for CO2 absorption. Journal of Membrane Science, 2008, 308(1-2): 162–170
CrossRef
Google scholar
|
[54] |
Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Effect of membrane module arrangement of gas-liquid membrane contacting process on CO2 absorption performance: a modeling study. Journal of Membrane Science, 2011, 372(1-2): 75–86
CrossRef
Google scholar
|
[55] |
Chen C C, Qiu W, Miller S J, Koros W J. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide. Journal of Membrane Science, 2011, 382(1-2): 212–221
CrossRef
Google scholar
|
[56] |
Sandru M, Haukebø S H, Hägg M B. Composite hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2010, 346(1): 172–186
CrossRef
Google scholar
|
[57] |
Simons K, Nijmeijer K, Mengers H, Brilman W, Wessling M. Highly selective amino acid salt solutions as absorption liquid for CO2 capture in gas-liquid membrane contactors. ChemSusChem, 2010, 3(8): 939–947
CrossRef
Google scholar
|
[58] |
Jin H G, Han S H, Lee Y M, Yeo Y K. Modeling and control of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2011, 28(1): 41–48
CrossRef
Google scholar
|
[59] |
Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R. CO2 stripping from monoethanolamine using a membrane contactor. Journal of Membrane Science, 2011, 376(1-2): 110–118
CrossRef
Google scholar
|
[60] |
Boributh S, Rongwong W, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. Journal of Membrane Science, 2012, 401: 175–189
CrossRef
Google scholar
|
[61] |
Ghasem N, Al-Marzouqi M, Zhu L. Preparation and properties of polyethersulfone hollow fiber membranes with O-xylene as an additive used in membrane contactors for CO2 absorption. Separation and Purification Technology, 2012, 92: 1–10
CrossRef
Google scholar
|
[62] |
Kim D H, Baek I H, Hong S U, Lee H K. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. Journal of Membrane Science, 2011, 372(1-2): 346–354
CrossRef
Google scholar
|
[63] |
Kumbharkar S, Liu Y, Li K. High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. Journal of Membrane Science, 2011, 375(1-2): 231–240
CrossRef
Google scholar
|
[64] |
Lee S H, Kim J N, Eom W H, Ko Y D, Hong S U, Back I H. Development of water gas shift/membrane hybrid system for precombustion CO2 capture in a coal gasification process. Energy Procedia, 2011, 4: 1139–1146
CrossRef
Google scholar
|
[65] |
Mansourizadeh A, Ismail A F. CO2 stripping from water through porous PVDF hollow fiber membrane contactor. Desalination, 2011, 273(2-3): 386–390
CrossRef
Google scholar
|
[66] |
Mansourizadeh A, Ismail A F. Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption: effect of different non-solvent additives in the polymer dope. International Journal of Greenhouse Gas Control, 2011, 5(4): 640–648
CrossRef
Google scholar
|
[67] |
Nguyen P, Lasseuguette E, Medina Gonzalez Y, Remigy J, Roizard D, Favre E. A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture. Journal of Membrane Science, 2011, 377(1-2): 261–272
CrossRef
Google scholar
|
[68] |
Sohrabi M R, Marjani A, Moradi S, Davallo M, Shirazian S. Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes. Applied Mathematical Modelling, 2011, 35(1): 174–188
CrossRef
Google scholar
|
[69] |
Ghasem N, Al Marzouqi M, Rahim N A. Modeling of CO2 absorption in a membrane contactor considering solvent evaporation. Separation and Purification Technology, 2013, 110: 1–10
CrossRef
Google scholar
|
[70] |
Hassanlouei R N, Pelalak R, Daraei A. Wettability study in CO2 capture from flue gas using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 16: 233–240
CrossRef
Google scholar
|
[71] |
Hwang H Y, Nam S Y, Koh H C, Ha S Y, Barbieri G, Drioli E. The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 205–211
CrossRef
Google scholar
|
[72] |
Lively R P, Dose M E, Xu L, Vaughn J T, Johnson J, Thompson J A, Zhang K, Lydon M E, Lee J S, Liu L, Hu Z, Karvan O, Realff M J, Koros W J. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas. Journal of Membrane Science, 2012, 423: 302–313
CrossRef
Google scholar
|
[73] |
Marzouk S A, Al-Marzouqi M H, Teramoto M, Abdullatif N, Ismail Z M. Simultaneous removal of CO2 and H2S from pressurized CO2-H2S-CH4 gas mixture using hollow fiber membrane contactors. Separation and Purification Technology, 2012, 86: 88–97
CrossRef
Google scholar
|
[74] |
Naim R, Ismail A F, Mansourizadeh A. Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping. Journal of Membrane Science, 2012, 423: 503–513
CrossRef
Google scholar
|
[75] |
Naim R, Ismail A F, Mansourizadeh A. Preparation of microporous PVDF hollow fiber membrane contactors for CO2 stripping from diethanolamine solution. Journal of Membrane Science, 2012, 392: 29–37
CrossRef
Google scholar
|
[76] |
Rahbari Sisakht M, Ismail A F, Matsuura T. Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 88: 99–106
CrossRef
Google scholar
|
[77] |
Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T. A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO2 absorption. Journal of Membrane Science, 2012, 415: 221–228
CrossRef
Google scholar
|
[78] |
Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T. Effect of novel surface modifying macromolecules on morphology and performance of polysulfone hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 99: 61–68
CrossRef
Google scholar
|
[79] |
Shirazian S, Marjani A, Rezakazemi M. Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Engineering with Computers, 2012, 28(2): 189–198
CrossRef
Google scholar
|
[80] |
Kim K, Ingole P G, Kim J, Lee H. Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas. Chemical Engineering Journal, 2013, 233: 242–250
CrossRef
Google scholar
|
[81] |
Mehdipour M, Karami M, Keshavarz P, Ayatollahi S. Analysis of CO2 separation with aqueous potassium carbonate solution in a hollow fiber membrane contactor. Energy & Fuels, 2013, 27(4): 2185–2193
CrossRef
Google scholar
|
[82] |
Naim R, Ismail A F. Effect of fiber packing density on physical CO2 absorption performance in gas-liquid membrane contactor. Separation and Purification Technology, 2013, 115: 152–157
CrossRef
Google scholar
|
[83] |
Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J, Wang S. PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(1): 215–228
CrossRef
Google scholar
|
[84] |
Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T, Emadzadeh D. Effect of SMM concentration on morphology and performance of surface modified PVDF hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2013, 116: 67–72
CrossRef
Google scholar
|
[85] |
Razavi S M R, Razavi S M J, Miri T, Shirazian S. CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine. International Journal of Greenhouse Gas Control, 2013, 15: 142–149
CrossRef
Google scholar
|
[86] |
Shen J N, Yu C C, Zeng G N, Van der Bruggen B. Preparation of a facilitated transport membrane composed of carboxymethyl chitosan and polyethylenimine for CO2/N2 separation. International Journal of Molecular Sciences, 2013, 14(2): 3621–3638
CrossRef
Google scholar
|
[87] |
Amrei S M H H, Memardoost S, Dehkordi A M. Comprehensive modeling and CFD simulation of absorption of CO2 and H2S by MEA solution in hollow fiber membrane reactors. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(2): 657–672
CrossRef
Google scholar
|
[88] |
Chen H Z, Thong Z, Li P, Chung T S. High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39(10): 5043–5053
CrossRef
Google scholar
|
[89] |
Ghasem N, Al Marsouqi M, Rahim N A. Modeling and simulation of membrane contactor employed to strip CO2 from rich solvents via COMSOL Multiphysics®. In: Proceedings of the COMSOL Conference. Zurich: COMSL, 2014, 1–5
|
[90] |
He X, Kim T J, Hägg M B. Hybrid fixed-site-carrier membranes for CO2 removal from high pressure natural gas: membrane optimization and process condition investigation. Journal of Membrane Science, 2014, 470: 266–274
CrossRef
Google scholar
|
[91] |
Kimball E, Al Azki A, Gomez A, Goetheer E, Booth N, Adams D, Ferre D. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2014, 69(6): 1047–1058
CrossRef
Google scholar
|
[92] |
Kundu P K, Chakma A, Feng X. Effectiveness of membranes and hybrid membrane processes in comparison with absorption using amines for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2014, 28: 248–256
CrossRef
Google scholar
|
[93] |
Li S, Wang Z, He W, Zhang C, Wu H, Wang J, Wang S. Effects of minor SO2 on the transport properties of fixed carrier membranes for CO2 capture. Industrial & Engineering Chemistry Research, 2014, 53(18): 7758–7767
CrossRef
Google scholar
|
[94] |
Wang L, Zhang Z, Zhao B, Zhang H, Lu X, Yang Q. Effect of long-term operation on the performance of polypropylene and polyvinylidene fluoride membrane contactors for CO2 absorption. Separation and Purification Technology, 2013, 116: 300–306
CrossRef
Google scholar
|
[95] |
Wang Z, Fang M, Pan Y, Yan S, Luo Z. Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption–desorption analysis. Chemical Engineering Science, 2013, 93: 238–249
CrossRef
Google scholar
|
[96] |
Wang Z, Fang M, Yu H, Wei C C, Luo Z. Experimental and modeling study of trace CO2 removal in a hollow-fiber membrane contactor, using CO2-loaded monoethanolamine. Industrial & Engineering Chemistry Research, 2013, 52(50): 18059–18070
CrossRef
Google scholar
|
[97] |
Yoshimune M, Haraya K. CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia, 2013, 37: 1109–1116
CrossRef
Google scholar
|
[98] |
Zhao Y, Ho W W. CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Industrial & Engineering Chemistry Research, 2012, 52(26): 8774–8782
CrossRef
Google scholar
|
[99] |
Ma C, Koros W J. Effects of hydrocarbon and water impurities on CO2/CH4 separation performance of ester-crosslinked hollow fiber membranes. Journal of Membrane Science, 2014, 451: 1–9
CrossRef
Google scholar
|
[100] |
Makhloufi C, Lasseuguette E, Remigy J C, Belaissaoui B, Roizard D, Favre E. Ammonia based CO2 capture process using hollow fiber membrane contactors. Journal of Membrane Science, 2014, 455: 236–246
CrossRef
Google scholar
|
[101] |
Mansourizadeh A, Aslmahdavi Z, Ismail A F, Matsuura T. Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO2 absorption. International Journal of Greenhouse Gas Control, 2014, 26: 83–92
CrossRef
Google scholar
|
[102] |
Mansourizadeh A, Pouranfard A R. Microporous polyvinylidene fluoride hollow fiber membrane contactors for CO2 stripping: effect of PEG-400 in spinning dope. Chemical Engineering Research & Design, 2014, 92(1): 181–190
CrossRef
Google scholar
|
[103] |
Masoumi S, Keshavarz P, Rastgoo Z. Theoretical investigation on CO2 absorption into DEAB solution using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2014, 18: 23–30
CrossRef
Google scholar
|
[104] |
Rahbari Sisakht M, Rana D, Matsuura T, Emadzadeh D, Padaki M, Ismail A F. Study on CO2 stripping from water through novel surface modified PVDF hollow fiber membrane contactor. Chemical Engineering Journal, 2014, 246: 306–310
CrossRef
Google scholar
|
[105] |
Rahim N A, Ghasem N, Al Marzouqi M. Stripping of CO2 from different aqueous solvents using PVDF hollow fiber membrane contacting process. Journal of Natural Gas Science and Engineering, 2014, 21: 886–893
CrossRef
Google scholar
|
[106] |
Rezaei M A, Ismail A F, Hashemifard S A, Bakeri G, Matsuura T. Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process. International Journal of Greenhouse Gas Control, 2014, 26: 147–157
CrossRef
Google scholar
|
[107] |
Carapellucci R, Giordano L, Vaccarelli M. Study of a natural gas combined cycle with multi-stage membrane systems for CO2 post-combustion capture. Energy Procedia, 2015, 81: 412–421
CrossRef
Google scholar
|
[108] |
Farjami M, Moghadassi A, Vatanpour V. Modeling and simulation of CO2 removal in a polyvinylidene fluoride hollow fiber membrane contactor with computational fluid dynamics. Chemical Engineering and Processing: Process Intensification, 2015, 98: 41–51
CrossRef
Google scholar
|
[109] |
Goyal N, Suman S, Gupta S. Mathematical modeling of CO2 separation from gaseous-mixture using a hollow-fiber membrane module: physical mechanism and influence of partial-wetting. Journal of Membrane Science, 2015, 474: 64–82
CrossRef
Google scholar
|
[110] |
Lee H J, Magnone E, Park J H. Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent. Journal of Membrane Science, 2015, 494: 143–153
CrossRef
Google scholar
|
[111] |
Lee S, Choi J W, Lee S H. Separation of greenhouse gases (SF6, CF4 and CO2) in an industrial flue gas using pilot-scale membrane. Separation and Purification Technology, 2015, 148: 15–24
CrossRef
Google scholar
|
[112] |
Li Y, Li X, Wu H, Xin Q, Wang S, Liu Y, Tian Z, Zhou T, Jiang Z, Tian H, Cao X, Wang B. Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO2 separation. Journal of Membrane Science, 2015, 493: 460–469
CrossRef
Google scholar
|
[113] |
Lock S S M, Lau K K, Ahmad F, Shariff A. Modeling, simulation and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane. International Journal of Greenhouse Gas Control, 2015, 36: 114–134
CrossRef
Google scholar
|
[114] |
Mulukutla T, Chau J, Singh D, Obuskovic G, Sirkar K K. Novel membrane contactor for CO2 removal from flue gas by temperature swing absorption. Journal of Membrane Science, 2015, 493: 321–328
CrossRef
Google scholar
|
[115] |
Rahim N A, Ghasem N, Al Marzouqi M. Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2015, 26: 108–117
CrossRef
Google scholar
|
[116] |
Sadoogh M, Mansourizadeh A, Mohammadinik H. An experimental study on the stability of PVDF hollow fiber membrane contactors for CO2 absorption with alkanolamine solutions. Royal Society of Chemistry Advances, 2015, 5(105): 86031–86040
CrossRef
Google scholar
|
[117] |
Vakharia V, Ramasubramanian K, Ho W W. An experimental and modeling study of CO2-selective membranes for IGCC syngas purification. Journal of Membrane Science, 2015, 488: 56–66
CrossRef
Google scholar
|
[118] |
Wickramanayake S, Hopkinson D, Myers C, Hong L, Feng J, Seol Y, Plasynski D, Zeh M, Luebke D. Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications. Journal of Membrane Science, 2014, 470: 52–59
CrossRef
Google scholar
|
[119] |
Yan S, He Q, Zhao S, Wang Y, Ai P. Biogas upgrading by CO2 removal with a highly selective natural amino acid salt in gas-liquid membrane contactor. Chemical Engineering and Processing: Process Intensification, 2014, 85: 125–135
CrossRef
Google scholar
|
[120] |
Zaidiza D A, Billaud J, Belaissaoui B, Rode S, Roizard D, Favre E. Modeling of CO2 post-combustion capture using membrane contactors, comparison between one- and two-dimensional approaches. Journal of Membrane Science, 2014, 455: 64–74
CrossRef
Google scholar
|
[121] |
Zhang L, Qu Z Y, Yan Y F, Ju S X, Zhang Z E. Numerical investigation of the effects of polypropylene hollow fibre membrane structure on the performance of CO2 removal from flue gas. Royal Society of Chemistry Advances, 2015, 5(1): 424–433
CrossRef
Google scholar
|
[122] |
Zhang X, Seames W S, Tande B M. Recovery of CO2 from monoethanolamine using a membrane contactor. Separation Science and Technology, 2014, 49(1): 1–11
CrossRef
Google scholar
|
[123] |
Zhang Y, Wang R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas-liquid membrane contactor. Journal of Membrane Science, 2014, 452: 379–389
CrossRef
Google scholar
|
[124] |
Zhang Z, Yan Y, Zhang L, Chen Y, Ju S. CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 2014, 19: 311–316
CrossRef
Google scholar
|
[125] |
Zhang Z, Yan Y, Zhang L, Ju S. Numerical simulation and analysis of CO2 removal in a polypropylene hollow fiber membrane contactor. International Journal of Chemical Engineering, 2014, 2014: 1–7
CrossRef
Google scholar
|
[126] |
Baghban A, Azar A A. ANFIS modeling of CO2 separation from natural gas using hollow fiber polymeric membrane. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2018, 40(2): 193–199
CrossRef
Google scholar
|
[127] |
Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 2016, 520: 860–868
CrossRef
Google scholar
|
[128] |
Ghadiri M, Marjani A, Shirazian S. Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes. Environmental Science and Pollution Research International, 2017, 24(16): 14508–14515
CrossRef
Google scholar
|
[129] |
Gilassi S, Rahmanian N. CFD modelling of a hollow fibre membrane for CO2 removal by aqueous amine solutions of MEA, DEA and MDEA. International Journal of Chemical Reactor Engineering, 2016, 14(1): 53–61
CrossRef
Google scholar
|
[130] |
Hosseini S, Mansourizadeh A. Preparation of porous hydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactors for CO2 stripping. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 156–166
CrossRef
Google scholar
|
[131] |
Jin P, Huang C, Shen Y, Zhan X, Hu X, Wang L, Wang L. Simultaneous separation of H2S and CO2 from biogas by gas-liquid membrane contactor using single and mixed absorbents. Energy & Fuels, 2017, 31(10): 11117–11126
CrossRef
Google scholar
|
[132] |
Jo E S, An X, Ingole P G, Choi W K, Park Y S, Lee H K. CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering, 2017, 25(3): 278–287
CrossRef
Google scholar
|
[133] |
Jomekian A, Behbahani R M, Mohammadi T, Kargari A. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574
CrossRef
Google scholar
|
[134] |
Kim S J, Park A, Nam S E, Park Y I, Lee P S. Practical designs of membrane contactors and their performances in CO2/CH4 separation. Chemical Engineering Science, 2016, 155: 239–247
CrossRef
Google scholar
|
[135] |
Liao J, Wang Z, Wang M, Gao C, Zhao S, Wang J, Wang S. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane. Journal of Membrane Science, 2016, 511: 9–19
CrossRef
Google scholar
|
[136] |
Otani A, Zhang Y, Matsuki T, Kamio E, Matsuyama H, Maginn E J. Molecular design of high CO2 reactivity and low viscosity ionic liquids for CO2 separative facilitated transport membranes. Industrial & Engineering Chemistry Research, 2016, 55(10): 2821–2830
CrossRef
Google scholar
|
[137] |
Rafiq S, Deng L, Hägg M B. Role of facilitated transport membranes and composite membranes for efficient CO2 capture: a review. ChemBioEng Reviews, 2016, 3(2): 68–85
CrossRef
Google scholar
|
[138] |
Razavi S M R, Shirazian S, Nazemian M. Numerical simulation of CO2 separation from gas mixtures in membrane modules: effect of chemical absorbent. Arabian Journal of Chemistry, 2016, 9(1): 62–71
CrossRef
Google scholar
|
[139] |
Woo K T, Dong G, Lee J, Kim J S, Do Y S, Lee W H, Lee H S, Lee Y M. Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes. Journal of Membrane Science, 2016, 510: 472–480
CrossRef
Google scholar
|
[140] |
Yan Y, Zhang Z, Zhang L, Wang J, Li J, Ju S. Modeling of CO2 separation from flue gas by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membrane contactors: effect of gas and liquid parameters. Journal of Energy Engineering, 2014, 141(4): 04014034
CrossRef
Google scholar
|
[141] |
Zaidiza D A, Belaissaoui B, Rode S, Neveux T, Makhloufi C, Castel C, Roizard D, Favre E. Adiabatic modelling of CO2 capture by amine solvents using membrane contactors. Journal of Membrane Science, 2015, 493: 106–119
CrossRef
Google scholar
|
[142] |
Zaidiza D A, Wilson S G, Belaissaoui B, Rode S, Castel C, Roizard D, Favre E. Rigorous modelling of adiabatic multicomponent CO2 post-combustion capture using hollow fibre membrane contactors. Chemical Engineering Science, 2016, 145: 45–58
CrossRef
Google scholar
|
[143] |
Zhang L, Li J, Zhou L, Liu R, Wang X, Yang L. Fouling of impurities in desulfurized flue gas on hollow fiber membrane absorption for CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(29): 8002–8010
CrossRef
Google scholar
|
[144] |
Zhang L, Qu R, Sha Y, Wang X, Yang L. Membrane gas absorption for CO2 capture from flue gas containing fine particles and gaseous contaminants. International Journal of Greenhouse Gas Control, 2015, 33: 10–17
CrossRef
Google scholar
|
[145] |
Zhang L, Wang X, Yu R, Li J, Hu B, Yang L. Hollow fiber membrane separation process in the presence of gaseous and particle impurities for post-combustion CO2 capture. International Journal of Green Energy, 2017, 14(1): 15–23
CrossRef
Google scholar
|
[146] |
Kang G, Chan Z P, Saleh S B M, Cao Y. Removal of high concentration CO2 from natural gas using high pressure membrane contactors. International Journal of Greenhouse Gas Control, 2017, 60: 1–9
CrossRef
Google scholar
|
[147] |
Kim S H, Kim J K, Yeo J G, Yeo Y K. Comparative feasibility study of CO2 capture in hollowfiber membrane processes based on process models and heat exchanger analysis. Chemical Engineering Research & Design, 2017, 117: 659–669
CrossRef
Google scholar
|
[148] |
Lee S, Binns M, Lee J H, Moon J H, Yeo J G, Yeo Y K, Lee Y M, Kim J K. Membrane separation process for CO2 capture from mixed gases using TR and XTR hollow fiber membranes: process modeling and experiments. Journal of Membrane Science, 2017, 541: 224–234
CrossRef
Google scholar
|
[149] |
Li H, Ding X, Zhang Y, Liu J. Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. Journal of Membrane Science, 2017, 543: 58–68
CrossRef
Google scholar
|
[150] |
Liu B, Zhou R, Bu N, Wang Q, Zhong S, Wang B, Hidetoshi K. Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation. Journal of Membrane Science, 2017, 524: 12–19
CrossRef
Google scholar
|
[151] |
Mirfendereski M, Mohammadi T. Investigation of H2S and CO2 removal from gas streams using hollow fiber membrane gas-liquid contactors. Chemical and Biochemical Engineering Quarterly, 2017, 31(2): 139–144
CrossRef
Google scholar
|
[152] |
Rahmawati Y, Nurkhamidah S. Susianto, Listiyana N I, Putricahyani W. Application of dual membrane contactor for simultaneous CO2 removal using continues diethanolamine (DEA). In: AIP Conference Proceedings. AIP Publishing, 2017, 100009
|
[153] |
Rudaini I A, Naim R, Abdullah S, Mokhtar N M, Jaafar J. PVDF-cloisite hollow fiber membrane for CO2 absorption via membrane contactor. Jurnal Teknologi, 2017, 79(1-2): 17–23
|
[154] |
Saidi M. Kinetic study and process model development of CO2 absorption using hollow fiber membrane contactor with promoted hot potassium carbonate. Journal of Environmental Chemical Engineering, 2017, 5(5): 4415–4430
CrossRef
Google scholar
|
[155] |
Saidi M. Mathematical modeling of CO2 absorption into novel reactive DEAB solution in hollow fiber membrane contactors; kinetic and mass transfer investigation. Journal of Membrane Science, 2017, 524: 186–196
CrossRef
Google scholar
|
[156] |
Usman M, Dai Z, Hillestad M, Deng L. Mathematical modeling and validation of CO2 mass transfer in a membrane contactor using ionic liquids for pre-combustion CO2 capture. Chemical Engineering Research & Design, 2017, 123: 377–387
CrossRef
Google scholar
|
[157] |
Wang F, Kang G, Liu D, Li M, Cao Y. Enhancing CO2 absorption efficiency using a novel PTFE hollow fiber membrane contactor at elevated pressure. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(6): 2135–2145
CrossRef
Google scholar
|
[158] |
Zhou F, Tien H N, Xu W L, Chen J T, Liu Q, Hicks E, Fathizadeh M, Li S, Yu M. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nature Communications, 2017, 8(1): 2107
CrossRef
Google scholar
|
[159] |
Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO2 separation. Journal of Colloid and Interface Science, 2018, 510: 12–19
CrossRef
Google scholar
|
[160] |
Ko D. Development of a dynamic simulation model of a hollow fiber membrane module to sequester CO2 from coalbed methane. Journal of Membrane Science, 2018, 546: 258–269
CrossRef
Google scholar
|
[161] |
Pang H, Gong H, Du M, Shen Q, Chen Z. Effect of non-solvent additive concentration on CO2 absorption performance of polyvinylidenefluoride hollow fiber membrane contactor. Separation and Purification Technology, 2018, 191: 38–47
CrossRef
Google scholar
|
[162] |
Fazaeli R, Razavi S M R, Najafabadi M S, Torkaman R, Hemmati A. Computational simulation of CO2 removal from gas mixtures by chemical absorbents in porous membranes. Royal Society of Chemistry Advances, 2015, 5(46): 36787–36797
CrossRef
Google scholar
|
[163] |
Eslami S, Mousavi S M, Danesh S, Banazadeh H. Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor. Advances in Engineering Software, 2011, 42(8): 612–620
CrossRef
Google scholar
|
[164] |
Marti A M, Wickramanayake W, Dahe G, Sekizkardes A, Bank T L, Hopkinson D P, Venna S R. Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(7): 5678–5682
CrossRef
Google scholar
|
[165] |
Vu D Q, Koros W J, Miller S J. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial & Engineering Chemistry Research, 2002, 41(3): 367–380
CrossRef
Google scholar
|
[166] |
Wang Z, Fang M, Yu H, Ma Q, Luo Z. Modeling of CO2 stripping in a hollow fiber membrane contactor for CO2 capture. Energy & Fuels, 2013, 27(11): 6887–6898
CrossRef
Google scholar
|
[167] |
Lee J H, Lee J, Jo H J, Seong J G, Kim J S, Lee W H, Moon J, Lee D, Oh W J, Yeo J G, Lee Y M. Wet CO2/N2 permeation through a crosslinked thermally rearranged poly(benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane module for CO2 capture. Journal of Membrane Science, 2017, 539: 412–420
CrossRef
Google scholar
|
[168] |
Li S, Pyrzynski T J, Klinghoffer N B, Tamale T, Zhong Y, Aderhold J L, Zhou S J, Meyer H S, Ding Y, Bikson B. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. Journal of Membrane Science, 2017, 527: 92–101
CrossRef
Google scholar
|
[169] |
Hwang S, Chi W S, Lee S J, Im S H, Kim J H, Kim J. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. Journal of Membrane Science, 2015, 480: 11–19
CrossRef
Google scholar
|
[170] |
Khan A L, Klaysom C, Gahlaut A, Li X, Vankelecom I F. SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations. Journal of Materials Chemistry, 2012, 22(37): 20057–20064
CrossRef
Google scholar
|
[171] |
Khan A L, Klaysom C, Gahlaut A, Vankelecom I F. Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation. Journal of Membrane Science, 2013, 436: 145–153
CrossRef
Google scholar
|
[172] |
Li S, Fan C Q. High-flux SAPO-34 membrane for CO2/N2 separation. Industrial & Engineering Chemistry Research, 2010, 49(9): 4399–4404
CrossRef
Google scholar
|
[173] |
Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R, Wu H. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Applied Materials & Interfaces, 2015, 7(9): 5528–5537
CrossRef
Google scholar
|
[174] |
Li X, Jiang Z, Wu Y, Zhang H, Cheng Y, Guo R, Wu H. High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. Journal of Membrane Science, 2015, 495: 72–80
CrossRef
Google scholar
|
[175] |
Li X, Ma L, Zhang H, Wang S, Jiang Z, Guo R, Wu H, Cao X, Yang J, Wang B. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015, 479: 1–10
CrossRef
Google scholar
|
[176] |
Lin R, Ge L, Liu S, Rudolph V, Zhu Z. Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(27): 14750–14757
CrossRef
Google scholar
|
[177] |
Loloei M, Omidkhah M, Moghadassi A, Amooghin A E. Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. International Journal of Greenhouse Gas Control, 2015, 39: 225–235
CrossRef
Google scholar
|
[178] |
Mahmoudi A, Asghari M, Zargar V. CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. Journal of Industrial and Engineering Chemistry, 2015, 23: 238–242
CrossRef
Google scholar
|
[179] |
Moghadassi A, Rajabi Z, Hosseini S, Mohammadi M. Preparation and characterization of polycarbonate-blend-raw/functionalized multi-walled carbon nano tubes mixed matrix membrane for CO2 separation. Separation Science and Technology, 2013, 48(8): 1261–1271
CrossRef
Google scholar
|
[180] |
Mohshim D F, Mukhtar H, Man Z. The effect of incorporating ionic liquid into polyethersulfone-SAPO-34 based mixed matrix membrane on CO2 gas separation performance. Separation and Purification Technology, 2014, 135: 252–258
CrossRef
Google scholar
|
[181] |
Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459: 244–255
CrossRef
Google scholar
|
[182] |
Peydayesh M, Asarehpour S, Mohammadi T, Bakhtiari O. Preparation and characterization of SAPO-34-Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chemical Engineering Research & Design, 2013, 91(7): 1335–1342
CrossRef
Google scholar
|
[183] |
Rodenas T, Van Dalen M, García Pérez E, Serra Crespo P, Zornoza B, Kapteijn F, Gascon J. Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53 (Al)@ PI. Advanced Functional Materials, 2014, 24(2): 249–256
CrossRef
Google scholar
|
[184] |
Rodenas T, Van Dalen M, Serra Crespo P, Kapteijn F, Gascon J. Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2014, 192: 35–42
CrossRef
Google scholar
|
[185] |
Roh D K, Kim S J, Chi W S, Kim J K, Kim J H. Dual-functionalized mesoporous TiO2 hollow nanospheres for improved CO2 separation membranes. Chemical Communications, 2014, 50(43): 5717–5720
CrossRef
Google scholar
|
[186] |
Thompson J A, Vaughn J T, Brunelli N A, Koros W J, Jones C W, Nair S. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas. Microporous and Mesoporous Materials, 2014, 192: 43–51
CrossRef
Google scholar
|
[187] |
Xin Q, Wu H, Jiang Z, Li Y, Wang S, Li Q, Li X, Lu X, Cao X, Yang J. SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2014, 467: 23–35
CrossRef
Google scholar
|
[188] |
Xing R, Ho W W. Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation. Journal of Membrane Science, 2011, 367(1-2): 91–102
CrossRef
Google scholar
|
[189] |
Yilmaz G, Keskin S. Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO2, CH4 and H2 separations using molecular simulations. Industrial & Engineering Chemistry Research, 2012, 51(43): 14218–14228
CrossRef
Google scholar
|
[190] |
Zhang L, Hu Z, Jiang J. Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: a fully atomistic simulation study. Journal of Physical Chemistry C, 2012, 116(36): 19268–19277
CrossRef
Google scholar
|
[191] |
Zhao D, Ren J, Li H, Hua K, Deng M. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. Journal of Energy Chemistry, 2014, 23(2): 227–234
CrossRef
Google scholar
|
[192] |
Zhao H Y, Cao Y M, Ding X L, Zhou M Q, Liu J H, Yuan Q. Poly(ethylene oxide) induced cross-linking modification of matrimid membranes for selective separation of CO2. Journal of Membrane Science, 2008, 320(1-2): 179–184
CrossRef
Google scholar
|
[193] |
Nasir R, Mukhtar H, Man Z, Shaharun M S, Bakar M A. Development and performance prediction of polyethersulfone-carbon molecular sieve mixed matrix membrane for CO2/CH4 separation. Chemical Engineering Transactions, 2015, 45: 1417–1422
|
[194] |
Rabiee H, Alsadat S M, Soltanieh M, Mousavi S A, Ghadimi A. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239
CrossRef
Google scholar
|
[195] |
Rezaei M, Ismail A F, Bakeri G, Hashemifard S, Matsuura T. Effect of general montmorillonite and cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO2 absorption. Chemical Engineering Journal, 2015, 260: 875–885
CrossRef
Google scholar
|
[196] |
Seoane B, Coronas J, Gascon I, Benavides M E, Karvan O, Caro J, Kapteijn F, Gascon J. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chemical Society Reviews, 2015, 44(8): 2421–2454
CrossRef
Google scholar
|
[197] |
Sorribas S, Comesaña Gándara B, Lozano A E, Zornoza B, Téllez C, Coronas J. Insight into ETS-10 synthesis for the preparation of mixed matrix membranes for CO2/CH4 gas separation. Royal Society of Chemistry Advances, 2015, 5(124): 102392–102398
CrossRef
Google scholar
|
[198] |
Alavi S A, Kargari A, Sanaeepur H, Karimi M. Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations. Research on Chemical Intermediates, 2017, 43(5): 2959–2984
CrossRef
Google scholar
|
[199] |
Amooghin A E, Omidkhah M, Sanaeepur H, Kargari A. Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO2/CH4 separation. Journal of Energy Chemistry, 2016, 25(3): 450–462
CrossRef
Google scholar
|
[200] |
Dong X, Liu Q, Huang A. Highly permselective MIL-68 (Al)/matrimid mixed matrix membranes for CO2/CH4 separation. Journal of Applied Polymer Science, 2016, 133(22): 43485
CrossRef
Google scholar
|
[201] |
Hosseinzadeh Beiragh H, Omidkhah M, Abedini R, Khosravi T, Pakseresht S. Synthesis and characterization of poly(ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia-Pacific Journal of Chemical Engineering, 2016, 11(4): 522–532
CrossRef
Google scholar
|
[202] |
Kang Z, Peng Y, Qian Y, Yuan D, Addicoat M A, Heine T, Hu Z, Tee L, Guo Z, Zhao D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chemistry of Materials, 2016, 28(5): 1277–1285
CrossRef
Google scholar
|
[203] |
Kertik A, Khan A L, Vankelecom I F. Mixed matrix membranes prepared from non-dried MOFs for CO2/CH4 separations. Royal Society of Chemistry Advances, 2016, 6(115): 114505–114512
CrossRef
Google scholar
|
[204] |
Kim J, Choi J, Soo Kang Y, Won J. Matrix effect of mixed-matrix membrane containing CO2-selective MOFs. Journal of Applied Polymer Science, 2016, 133(1): n/a
CrossRef
Google scholar
|
[205] |
Kim J, Fu Q, Scofield J M, Kentish S E, Qiao G G. Ultra-thin film composite mixed matrix membranes incorporating iron (III)-dopamine nanoparticles for CO2 separation. Nanoscale, 2016, 8(15): 8312–8323
CrossRef
Google scholar
|
[206] |
Kim J, Fu Q, Xie K, Scofield J M, Kentish S E, Qiao G G. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515: 54–62
CrossRef
Google scholar
|
[207] |
Kim S J, Chi W S, Jeon H, Kim J H, Patel R. Spontaneously self-assembled dual-layer mixed matrix membranes containing mass-produced mesoporous TiO2 for CO2 capture. Journal of Membrane Science, 2016, 508: 62–72
CrossRef
Google scholar
|
[208] |
Koolivand H, Sharif A, Chehrazi E, Kashani M R, Paran S M R. Mixed-matrix membranes comprising graphene-oxide nanosheets for CO2/CH4 separation: a comparison between glassy and rubbery polymer matrices. Polymer Science, Series A, 2016, 58(5): 801–809
CrossRef
Google scholar
|
[209] |
Xin Q, Li Z, Li C, Wang S, Jiang Z, Wu H, Zhang Y, Yang J, Cao X. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(12): 6629–6641
CrossRef
Google scholar
|
[210] |
Brunetti A, Cersosimo M, Kim J S, Dong G, Fontananova E, Lee Y M, Drioli E, Barbieri G. Thermally rearranged mixed matrix membranes for CO2 separation: an aging study. International Journal of Greenhouse Gas Control, 2017, 61: 16–26
CrossRef
Google scholar
|
[211] |
Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, Zhao D. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223
CrossRef
Google scholar
|
[212] |
Galaleldin S, Mannan H, Mukhtar H. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 130017
|
[213] |
Jusoh N, Yeong Y F, Lau K K, Shariff A M. Transport properties of mixed matrix membranes encompassing zeolitic imidazolate framework 8 (ZIF-8) nanofiller and 6FDA-durene polymer: optimization of process variables for the separation of CO2 from CH4. Journal of Cleaner Production, 2017, 149: 80–95
CrossRef
Google scholar
|
[214] |
Khalilinejad I, Kargari A, Sanaeepur H. Preparation and characterization of (Pebax 1657+ silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chemical Papers, 2017, 71(4): 803–818
CrossRef
Google scholar
|
[215] |
Khosravi T, Omidkhah M, Kaliaguine S, Rodrigue D. Amine-functionalized CuBTC/poly (ether-b-amide-6)(Pebax® MH 1657) mixed matrix membranes for CO2/CH4 separation. Canadian Journal of Chemical Engineering, 2017, 95(10): 2024–2033
CrossRef
Google scholar
|
[216] |
Krea M, Roizard D, Favre E. Copoly (alkyl ether imide) membranes as promising candidates for CO2 capture applications. Separation and Purification Technology, 2016, 161: 53–60
CrossRef
Google scholar
|
[217] |
Liu Y, Li X, Qin Y, Guo R, Zhang J. Pebax-polydopamine microsphere mixed-matrix membranes for efficient CO2 separation. Journal of Applied Polymer Science, 2017, 134(10): 44564
CrossRef
Google scholar
|
[218] |
Martin Gil V, López A, Hrabanek P, Mallada R, Vankelecom I, Fila V. Study of different titanosilicate (TS-1 and ETS-10) as fillers for mixed matrix membranes for CO2/CH4 gas separation applications. Journal of Membrane Science, 2017, 523: 24–35
CrossRef
Google scholar
|
[219] |
Nematollahi M H, Dehaghani A H S, Abedini R. CO2/CH4 separation with poly(4-methyl-1-pentyne) (TPX) based mixed matrix membrane filled with Al2O3 nanoparticles. Korean Journal of Chemical Engineering, 2016, 33(2): 657–665
CrossRef
Google scholar
|
[220] |
Nematollahi M H, Dehaghani A H S, Pirouzfar V, Akhondi E. Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO2/N2. Macromolecular Research, 2016, 24(9): 782–792
CrossRef
Google scholar
|
[221] |
Nguyen T H, Gong H, Lee S S, Bae T H. Amine-appended hierarchical Ca—a zeolite for enhancing CO2/CH4 selectivity of mixed-matrix membranes. ChemPhysChem, 2016, 17(20): 3165–3169
CrossRef
Google scholar
|
[222] |
Nordin N A H M, Ismail A F, Misdan N, Nazri N A M. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. in AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020091
|
[223] |
Park C H, Lee J H, Jang E, Lee K B, Kim J H. MgCO3-crystal-containing mixed matrix membranes with enhanced CO2 permselectivity. Chemical Engineering Journal, 2017, 307: 503–512
CrossRef
Google scholar
|
[224] |
Quan S, Li S W, Xiao Y C, Shao L. CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture. International Journal of Greenhouse Gas Control, 2017, 56: 22–29
CrossRef
Google scholar
|
[225] |
Rahmani M, Kazemi A, Talebnia F. Matrimid mixed matrix membranes for enhanced CO2/CH4 separation. Journal of Polymer Engineering, 2016, 36(5): 499–511
CrossRef
Google scholar
|
[226] |
Sanaeepur H, Kargari A, Nasernejad B, Amooghin A E, Omidkhah M. A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 403–413
CrossRef
Google scholar
|
[227] |
Sánchez Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, Téllez C, Coronas J. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53
CrossRef
Google scholar
|
[228] |
Sánchez Laínez J, Zornoza B, Téllez C, Coronas J. On the chemical filler-polymer interaction of nano-and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(37): 14334–14341
CrossRef
Google scholar
|
[229] |
Shamsabadi A A, Seidi F, Salehi E, Nozari M, Rahimpour A, Soroush M. Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(8): 4011–4025
CrossRef
Google scholar
|
[230] |
Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165
CrossRef
Google scholar
|
[231] |
Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(8): 2843–2852
CrossRef
Google scholar
|
[232] |
Shen Y, Wang H, Zhang X, Zhang Y. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 2016, 8(35): 23371–23378
CrossRef
Google scholar
|
[233] |
Shin H, Chi W S, Bae S, Kim J H, Kim J. High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2017, 53: 127–133
CrossRef
Google scholar
|
[234] |
Sumer Z, Keskin S. Computational screening of MOF-based mixed matrix membranes for CO2/N2 Separations. Journal of Nanomaterials, 2016, 2016: 1–12
CrossRef
Google scholar
|
[235] |
Tseng H H, Chuang H W, Zhuang G L, Lai W H, Wey M Y. Structure-controlled mesoporous SBA-15-derived mixed matrix membranes for H2 purification and CO2 capture. International Journal of Hydrogen Energy, 2017, 42(16): 11379–11391
CrossRef
Google scholar
|
[236] |
Waheed N, Mushtaq A, Tabassum S, Gilani M A, Ilyas A, Ashraf F, Jamal Y, Bilad M R, Khan A U, Khan A L. Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Separation and Purification Technology, 2016, 170: 122–129
CrossRef
Google scholar
|
[237] |
Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 10968–10977
CrossRef
Google scholar
|
[238] |
Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500: 66–75
CrossRef
Google scholar
|
[239] |
Xin Q, Zhang Y, Huo T, Ye H, Ding X, Lin L, Zhang Y, Wu H, Jiang Z. Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. Journal of Membrane Science, 2016, 508: 84–93
CrossRef
Google scholar
|
[240] |
Xin Q, Zhang Y, Shi Y, Ye H, Lin L, Ding X, Zhang Y, Wu H, Jiang Z. Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514: 73–85
CrossRef
Google scholar
|
[241] |
Zhang H, Guo R, Hou J, Wei Z, Li X. Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation. ACS Applied Materials & Interfaces, 2016, 8(42): 29044–29051
CrossRef
Google scholar
|
[242] |
Zhao D, Ren J, Wang Y, Qiu Y, Li H, Hua K, Li X, Ji J, Deng M. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. Journal of Membrane Science, 2017, 521: 104–113
CrossRef
Google scholar
|
[243] |
Li Y, Chung T S. Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal. International Journal of Hydrogen Energy, 2010, 35(19): 10560–10568
CrossRef
Google scholar
|
[244] |
Ebrahimi S, Mollaiy Berneti S, Asadi H, Peydayesh M, Akhlaghian F, Mohammadi T. PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling. Chemical Engineering Research & Design, 2016, 109: 647–656
CrossRef
Google scholar
|
[245] |
Xiong L, Gu S, Jensen K O, Yan Y S. Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation. ChemSusChem, 2014, 7(1): 114–116
CrossRef
Google scholar
|
[246] |
Zhou T, Luo L, Hu S, Wang S, Zhang R, Wu H, Jiang Z, Wang B, Yang J. Janus composite nanoparticle-incorporated mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2015, 489: 1–10
CrossRef
Google scholar
|
[247] |
Cui Z, DeMontigny D. Part 7: a review of CO2 capture using hollow fiber membrane contactors. Carbon Management, 2013, 4(1): 69–89
CrossRef
Google scholar
|
[248] |
Ahmad M Z, Navarro M, Lhotka M, Zornoza B, Téllez C, Fila V, Coronas J. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Separation and Purification Technology, 2018, 192: 465–474
CrossRef
Google scholar
|
[249] |
Cao L, Tao K, Huang A, Kong C, Chen L. A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chemical Communications, 2013, 49(76): 851–8515
CrossRef
Google scholar
|
[250] |
Dong L, Sun Y, Zhang C, Han D, Bai Y, Chen M. Efficient CO2 capture by metallo-supramolecular polymers as fillers to fabricate a polymeric blend membrane. Royal Society of Chemistry Advances, 2015, 5(83): 67658–67661
CrossRef
Google scholar
|
[251] |
Erucar I, Keskin S. Screening metal-organic framework-based mixed-matrix membranes for CO2/CH4 separations. Industrial & Engineering Chemistry Research, 2011, 50(22): 12606–12616
CrossRef
Google scholar
|
[252] |
Huang A, Chen Y, Liu Q, Wang N, Jiang J, Caro J. Synthesis of highly hydrophobic and permselective metal-organic framework Zn (BDC)(TED) 0.5 membranes for H2/CO2 separation. Journal of Membrane Science, 2014, 454: 126–132
CrossRef
Google scholar
|
[253] |
Li W, Zheng X, Dong Z, Li C, Wang W, Yan Y, Zhang J. Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes. Journal of Physical Chemistry C, 2016, 120(45): 2606–26066
CrossRef
Google scholar
|
[254] |
Monteiro B, Nabais A R, Almeida Paz F A, Cabrita L, Branco L C, Marrucho I M, Neves L A, Pereira C C. Membranes with a low loading of metal–organic framework-supported ionic liquids for CO2/N2 separation in CO2 capture. Energy Technology (Weinheim), 2017, 5(12): 2158–2162
CrossRef
Google scholar
|
[255] |
Morris C G, Jacques N M, Godfrey H G, Mitra T, Fritsch D, Lu Z, Murray C A, Potter J, Cobb T M, Yuan F, Tang C C, Yang S, Schröder M. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host. Chemical Science (Cambridge), 2017, 8(4): 3239–3248
CrossRef
Google scholar
|
[256] |
Nordin N A H M, Racha S M, Matsuura T, Misdan N, Sani N A A, Ismail A F, Mustafa A. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120
CrossRef
Google scholar
|
[257] |
Rui Z, James J B, Kasik A, Lin Y. Metal-organic framework membrane process for high purity CO2 production. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(11): 3836–3841
CrossRef
Google scholar
|
[258] |
Watanabe T, Keskin S, Nair S, Sholl D S. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu (hfipbb)(H2 hfipbb) 0.5. Physical Chemistry Chemical Physics, 2009, 11(48): 11389–11394
CrossRef
Google scholar
|
[259] |
Wu D, Maurin G, Yang Q, Serre C, Jobic H, Zhong C. Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(6): 1657–1661
CrossRef
Google scholar
|
[260] |
Yin H, Wang J, Xie Z, Yang J, Bai J, Lu J, Zhang Y, Yin D, Lin J Y. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N2 separation. Chemical Communications, 2014, 50(28): 3699–3701
CrossRef
Google scholar
|
[261] |
Kelman S, Lin H, Sanders E S, Freeman B D. CO2/C2H6 separation using solubility selective membranes. Journal of Membrane Science, 2007, 305(1-2): 57–68
CrossRef
Google scholar
|
[262] |
Low B T, Xiao Y, Chung T S, Liu Y. Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules, 2008, 41(4): 1297–1309
CrossRef
Google scholar
|
[263] |
Modigell M, Schumacher M, Teplyakov V V, Zenkevich V B. A membrane contactor for efficient CO2 removal in biohydrogen production. Desalination, 2008, 224(1-3): 186–190
CrossRef
Google scholar
|
[264] |
Yave W, Car A, Wind J, Peinemann K V. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology, 2010, 21(39): 395301
CrossRef
Google scholar
|
[265] |
Zhang Y, Wang Z, Wang S. Synthesis and characteristics of novel fixed carrier membrane for CO2 separation. Chemistry Letters, 2002, 31(4): 430–431
CrossRef
Google scholar
|
[266] |
Khan A L, Li X, Vankelecom I F. Mixed-gas CO2/CH4 and CO2/N2 separation with sulfonated PEEK membranes. Journal of Membrane Science, 2011, 372(1-2): 87–96
CrossRef
Google scholar
|
[267] |
Kim T J, Uddin M W, Sandru M, Hägg M B. The effect of contaminants on the composite membranes for CO2 separation and challenges in up-scaling of the membranes. Energy Procedia, 2011, 4: 737–744
CrossRef
Google scholar
|
[268] |
Zhang L, Xiao Y, Chung T S, Jiang J. Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: a combination of experiment and simulation study. Polymer, 2010, 51(19): 4439–4447
CrossRef
Google scholar
|
[269] |
Chang J, Kang S W. CO2 separation through poly(vinylidene fluoride-co-hexafluoropropylene) membrane by selective ion channel formed by tetrafluoroboric acid. Chemical Engineering Journal, 2016, 306: 1189–1192
CrossRef
Google scholar
|
[270] |
Fu X, Li X, Guo R, Zhang J, Cao X. Block copolymer membranes based on polyetheramine and methyl-containing polyisophthalamides designed for efficient CO2 separation. High Performance Polymers, 2018, 30(9): 1064–1074
CrossRef
Google scholar
|
[271] |
Ghadiri M, Marjani A, Shirazian S. Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 13: 1–8
CrossRef
Google scholar
|
[272] |
Kanehashi S, Kishida M, Kidesaki T, Shindo R, Sato S, Miyakoshi T, Nagai K. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid. Journal of Membrane Science, 2013, 430: 211–222
CrossRef
Google scholar
|
[273] |
Kwisnek L, Heinz S, Wiggins J S, Nazarenko S. Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation. Journal of Membrane Science, 2011, 369(1-2): 429–436
CrossRef
Google scholar
|
[274] |
Lee J H, Jung J P, Jang E, Lee K B, Hwang Y J, Min B K, Kim J H. PEDOT-PSS embedded comb copolymer membranes with improved CO2 capture. Journal of Membrane Science, 2016, 518: 21–30
CrossRef
Google scholar
|
[275] |
Li Y, Xin Q, Wang S, Tian Z, Wu H, Liu Y, Jiang Z. Trapping bound water within a polymer electrolyte membrane of calcium phosphotungstate for efficient CO2 capture. Chemical Communications, 2015, 51(10): 1901–1904
CrossRef
Google scholar
|
[276] |
Lindqvist K, Roussanaly S, Anantharaman R. Multi-stage membrane processes for CO2 capture from cement industry. Energy Procedia, 2014, 63: 6476–6483
CrossRef
Google scholar
|
[277] |
Ma Z, Qiao Z, Wang Z, Cao X, He Y, Wang J, Wang S. CO2 separation enhancement of the membrane by modifying the polymer with a small molecule containing amine and ester groups. Royal Society of Chemistry Advances, 2014, 4(41): 21313–21317
CrossRef
Google scholar
|
[278] |
Mondal A, Barooah M, Mandal B. Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane. International Journal of Greenhouse Gas Control, 2015, 39: 27–28
CrossRef
Google scholar
|
[279] |
Mondal A, Mandal B. Synthesis and characterization of crosslinked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. Journal of Membrane Science, 2013, 446: 383–394
CrossRef
Google scholar
|
[280] |
Ricci E, Minelli M, De Angelis M G. A multiscale approach to predict the mixed gas separation performance of glassy polymeric membranes for CO2 capture: the case of CO2/CH4 mixture in Matrimid®. Journal of Membrane Science, 2017, 539: 88–100
CrossRef
Google scholar
|
[281] |
Liu S, Liu G, Wei W, Xiangli F, Jin W. Ceramic supported PDMS and PEGDA composite membranes for CO2 separation. Chinese Journal of Chemical Engineering, 2013, 21(4): 348–356
CrossRef
Google scholar
|
[282] |
Sandru M, Kim T J, Capala W, Huijbers M, Hägg M B. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants. Energy Procedia, 2013, 37: 6473–6480
CrossRef
Google scholar
|
[283] |
Tseng H H, Itta A K, Weng T H, Li Y L. SBA-15/CMS composite membrane for H2 purification and CO2 capture: effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 2013, 180: 270–279
CrossRef
Google scholar
|
[284] |
Wang S, Li X, Wu H, Tian Z, Xin Q, He G, Peng D, Chen S, Yin Y, Jiang Z, Guiver M D. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy & Environmental Science, 2016, 9(6): 1863–1890
CrossRef
Google scholar
|
[285] |
Zainab G, Iqbal N, Babar A A, Huang C, Wang X, Yu J, Ding B. Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Composites Communications, 2017, 6: 41–47
CrossRef
Google scholar
|
[286] |
Kim K J, Park S H, So W W, Ahn D J, Moon S J. CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. Journal of Membrane Science, 2003, 211(1): 41–49
CrossRef
Google scholar
|
[287] |
Okabe K, Nakamura M, Mano H, Teramoto M, Yamada K. Separation and recovery of CO2 by membrane/absorption hybrid method. In: Proceedings of the Eighth Intenational Conference on Greenhouse Gas Control Technologies. Amsterdam: Elsevier, 2006, 409–412
|
[288] |
Francisco G J, Chakma A, Feng X. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. Journal of Membrane Science, 2007, 303(1-2): 54–63
CrossRef
Google scholar
|
[289] |
Sridhar S, Suryamurali R, Smitha B, Aminabhavi T. Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 297(1-3): 267–274
CrossRef
Google scholar
|
[290] |
Kai T, Kouketsu T, Duan S, Kazama S, Yamada K. Development of commercial-sized dendrimer composite membrane modules for CO2 removal from flue gas. Separation and Purification Technology, 2008, 63(3): 524–530
CrossRef
Google scholar
|
[291] |
Kosuri M R, Koros W J. Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. Journal of Membrane Science, 2008, 320(1-2): 65–72
CrossRef
Google scholar
|
[292] |
Kosuri M R, Koros W J. Asymmetric hollow fiber membranes for separation of CO2 from hydrocarbons and fluorocarbons at high-pressure conditions relevant to C2F4 polymerization. Industrial & Engineering Chemistry Research, 2009, 48(23): 10577–10583
CrossRef
Google scholar
|
[293] |
Safari M, Ghanizadeh A, Montazer Rahmati M M. Optimization of membrane-based CO2-removal from natural gas using simple models considering both pressure and temperature effects. International Journal of Greenhouse Gas Control, 2009, 3(1): 3–10
CrossRef
Google scholar
|
[294] |
Xing R, Ho W W. Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(6): 654–662
CrossRef
Google scholar
|
[295] |
Yave W, Car A, Funari S S, Nunes S P, Peinemann K V. CO2-philic polymer membrane with extremely high separation performance. Macromolecules, 2009, 43(1): 326–333
CrossRef
Google scholar
|
[296] |
Cong H, Yu B. Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation. Industrial & Engineering Chemistry Research, 2010, 49(19): 9363–9369
CrossRef
Google scholar
|
[297] |
Park H B, Han S H, Jung C H, Lee Y M, Hill A J. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1-2): 11–24
CrossRef
Google scholar
|
[298] |
Reijerkerk S R, Knoef M H, Nijmeijer K, Wessling M. Poly(ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. Journal of Membrane Science, 2010, 352(1-2): 126–135
CrossRef
Google scholar
|
[299] |
Yave W, Szymczyk A, Yave N, Roslaniec Z. Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: a new membrane material for CO2 separation. Journal of Membrane Science, 2010, 362(1-2): 407–416
CrossRef
Google scholar
|
[300] |
Yu X, Wang Z, Wei Z, Yuan S, Zhao J, Wang J, Wang S. Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362(1-2): 265–278
CrossRef
Google scholar
|
[301] |
Khan A L, Li X, Vankelecom I F. SPEEK/Matrimid blend membranes for CO2 separation. Journal of Membrane Science, 2011, 380(1-2): 55–62
CrossRef
Google scholar
|
[302] |
Peters L, Hussain A, Follmann M, Melin T, Hägg M B. CO2 removal from natural gas by employing amine absorption and membrane technology—a technical and economical analysis. Chemical Engineering Journal, 2011, 172(2-3): 952–960
CrossRef
Google scholar
|
[303] |
Reijerkerk S R, Jordana R, Nijmeijer K, Wessling M. Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas. International Journal of Greenhouse Gas Control, 2011, 5(1): 26–36
CrossRef
Google scholar
|
[304] |
Reijerkerk S R, Wessling M, Nijmeijer K. Pushing the limits of block copolymer membranes for CO2 separation. Journal of Membrane Science, 2011, 378(1-2): 479–484
CrossRef
Google scholar
|
[305] |
Sanaeepur H, Amooghin A E, Moghadassi A, Kargari A. Preparation and characterization of acrylonitrile-butadiene-styrene/poly(vinyl acetate) membrane for CO2 removal. Separation and Purification Technology, 2011, 80(3): 499–508
CrossRef
Google scholar
|
[306] |
Spadaccini C M, Mukerjee E V, Letts S A, Maiti A, O’Brien K C. Ultrathin polymer membranes for high throughput CO2 capture. Energy Procedia, 2011, 4: 731–736
CrossRef
Google scholar
|
[307] |
Xia J, Liu S, Chung T S. Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes. Macromolecules, 2011, 44(19): 7727–7736
CrossRef
Google scholar
|
[308] |
Ahmad F, Lau K K, Shariff A M, Murshid G. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Computers & Chemical Engineering, 2012, 36: 119–128
CrossRef
Google scholar
|
[309] |
Bengtson G, Neumann S, Filiz V. Optimization of PIM-membranes for separation of CO2. Procedia Engineering, 2012, 44: 796–798
CrossRef
Google scholar
|
[310] |
Han S H, Kwon H J, Kim K Y, Seong J G, Park C H, Kim S, Doherty C M, Thornton A W, Hill A J, Lozano A E, Berchtold K A, Lee Y M. Tuning microcavities in thermally rearranged polymer membranes for CO2 capture. Physical Chemistry Chemical Physics, 2012, 14(13): 4365–4373
CrossRef
Google scholar
|
[311] |
Kim S, Lee Y M. Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation, in nanotechnology for sustainable development. New York: Springer, 2012, 265–275
|
[312] |
Uddin M W, Hägg M B. Natural gas sweetening—the effect on CO2-CH4 separation after exposing a facilitated transport membrane to hydrogen sulfide and higher hydrocarbons. Journal of Membrane Science, 2012, 423: 143–149
CrossRef
Google scholar
|
[313] |
Hu T, Dong G, Li H, Chen V. Improved CO2 separation performance with additives of PEG and PEG-PDMS copolymer in poly(2,6-dimethyl-1,4-phenylene oxide) membranes. Journal of Membrane Science, 2013, 432: 13–24
CrossRef
Google scholar
|
[314] |
Kai T, Taniguchi I, Duan S, Chowdhury F A, Saito T, Yamazaki K, Ikeda K, Ohara T, Asano S, Kazama S. Molecular gate membrane: poly(amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture. Energy Procedia, 2013, 37: 961–968
CrossRef
Google scholar
|
[315] |
Kim T J, Vrålstad H, Sandru M, Hägg M B. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. Journal of Membrane Science, 2013, 428: 218–224
CrossRef
Google scholar
|
[316] |
Li S, Wang Z, Zhang C, Wang M, Yuan F, Wang J, Wang S. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 2013, 436: 121–131
CrossRef
Google scholar
|
[317] |
Nasir R, Mukhtar H, Man Z, Mohshim D F. Synthesis, characterization and performance study of newly developed amine polymeric membrane (APM) for carbon dioxide (CO2) removal. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear. Materials and Metallurgical Engineering, 2013, 7(9): 670–673
|
[318] |
Rahman M M, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan M M, Abetz V. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2013, 437: 286–297
CrossRef
Google scholar
|
[319] |
Wang M, Wang Z, Li S, Zhang C, Wang J, Wang S. A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy & Environmental Science, 2013, 6(2): 539–551
CrossRef
Google scholar
|
[320] |
Ahmadpour E, Shamsabadi A A, Behbahani R M, Aghajani M, Kargari A. Study of CO2 separation with PVC/Pebax composite membrane. Journal of Natural Gas Science and Engineering, 2014, 21: 518–523
CrossRef
Google scholar
|
[321] |
Constantinou A, Barrass S, Gavriilidis A. CO2 absorption in polytetrafluoroethylene membrane microstructured contactor using aqueous solutions of amines. Industrial & Engineering Chemistry Research, 2014, 53(22): 9236–9242
CrossRef
Google scholar
|
[322] |
Hussain A, Nasir H, Ahsan M. Process design analyses of CO2 capture from natural gas by polymer membrane. Journal of the Chemical Society of Pakistan, 2014, 36(3): 411–421
|
[323] |
Lin H, He Z, Sun Z, Vu J, Ng A, Mohammed M, Kniep J, Merkel T C, Wu T, Lambrecht R C. CO2-selective membranes for hydrogen production and CO2 capture-Part I: Membrane development. Journal of Membrane Science, 2014, 457: 149–161
CrossRef
Google scholar
|
[324] |
Mondal A, Mandal B. Novel CO2-selective cross-linked poly(vinyl alcohol)/polyvinylpyrrolidone blend membrane containing amine carrier for CO2-N2 separation: synthesis, characterization, and gas permeation study. Industrial & Engineering Chemistry Research, 2014, 53(51): 19736–19746
CrossRef
Google scholar
|
[325] |
Mondal A, Mandal B. CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 2014, 460: 126–138
CrossRef
Google scholar
|
[326] |
Nabian N, Ghoreyshi A, Rahimpour A, Shakeri M. Effect of polymer concentration on the structure and performance of polysulfone flat membrane for CO2 absorption in membrane contactor. Iranian Journal of Chemical Engineering, 2014, 11(2): 79
|
[327] |
Salih A A, Yi C, Peng H, Yang B, Yin L, Wang W. Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation. Journal of Membrane Science, 2014, 472: 110–118
CrossRef
Google scholar
|
[328] |
Wang L, Li Y, Li S, Ji P, Jiang C. Preparation of composite poly(ether block amide) membrane for CO2 capture. Journal of Energy Chemistry, 2014, 23(6): 717–725
CrossRef
Google scholar
|
[329] |
Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460: 62–70
CrossRef
Google scholar
|
[330] |
Scholes C A, Ribeiro C P, Kentish S E, Freeman B D. Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO2 separation. Separation and Purification Technology, 2014, 124: 134–140
CrossRef
Google scholar
|
[331] |
Wang Z, Fang M, Ma Q, Zhao Z, Wang T, Luo Z. Membrane stripping technology for CO2 desorption from CO2-rich absorbents with low energy consumption. Energy Procedia, 2014, 63: 765–772
CrossRef
Google scholar
|
[332] |
Zhou J, Tran M M, Haldeman A T, Jin J, Wagener E H, Husson S M. Perfluorocyclobutyl polymer thin-film composite membranes for CO2 separations. Journal of Membrane Science, 2014, 450: 478–486
CrossRef
Google scholar
|
[333] |
Gilassi S, Rahmanian N. Mathematical modelling and numerical simulation of CO2/CH4 separation in a polymeric membrane. Applied Mathematical Modelling, 2015, 39(21): 6599–6611
CrossRef
Google scholar
|
[334] |
Khalilinejad I, Sanaeepur H, Kargari A. Preparation of poly (ether-6-block amide)/PVC thin film composite membrane for CO2 separation: effect of top layer thickness and operating parameters. Journal of Membrane Science and Research, 2015, 1(3): 124–129
|
[335] |
Kim S J, Jeon H, Kim D J, Kim J H. High-performance polymer membranes with multi-functional amphiphilic micelles for CO2 capture. ChemSusChem, 2015, 8(22): 3783–3792
CrossRef
Google scholar
|
[336] |
Li P, Wang Z, Liu Y, Zhao S, Wang J, Wang S. A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances. Journal of Membrane Science, 2015, 476: 243–255
CrossRef
Google scholar
|
[337] |
Li P, Wang Z, Li W, Liu Y, Wang J, Wang S. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(28): 15481–15493
CrossRef
Google scholar
|
[338] |
Liao J, Wang Z, Gao C, Wang M, Yan K, Xie X, Zhao S, Wang J, Wang S. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(32): 16746–16761
CrossRef
Google scholar
|
[339] |
Nasir R, Mukhtar H, Man Z, Shaharun M S, Bakar M Z A. Effect of fixed carbon molecular sieve (CMS) loading and various di-ethanolamine (DEA) concentrations on the performance of a mixed matrix membrane for CO2/CH4 separation. Royal Society of Chemistry Advances, 2015, 5(75): 60814–60822
CrossRef
Google scholar
|
[340] |
Park C H, Lee J H, Jung J P, Jung B, Kim J H. A highly selective PEGBEM-g-POEM comb copolymer membrane for CO2/N2 separation. Journal of Membrane Science, 2015, 492: 452–460
CrossRef
Google scholar
|
[341] |
Park S, Lee A S, Do Y S, Hwang S S, Lee Y M, Lee J H, Lee J S. Rational molecular design of PEOlated ladder-structured polysilsesquioxane membranes for high performance CO2 removal. Chemical Communications, 2015, 51(83): 15308–15311
CrossRef
Google scholar
|
[342] |
Scofield J M, Gurr P A, Kim J, Fu Q, Halim A, Kentish S E, Qiao G G. High-performance thin film composite membranes with well-defined poly(dimethylsiloxane)--poly(ethylene glycol) copolymer additives for CO2 separation. Journal of Polymer Science. Part A, Polymer Chemistry, 2015, 53(12): 1500–1511
CrossRef
Google scholar
|
[343] |
Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H. A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes. Journal of Membrane Science, 2015, 475: 175–183
CrossRef
Google scholar
|
[344] |
Adewole J K, Ahmad A L. Process modeling and optimization studies of high pressure membrane separation of CO2 from natural gas. Korean Journal of Chemical Engineering, 2016, 33(10): 2998–3010
CrossRef
Google scholar
|
[345] |
Chen Y, Ho W W. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. Journal of Membrane Science, 2016, 514: 376–384
CrossRef
Google scholar
|
[346] |
Karamouz F, Maghsoudi H, Yegani R. Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation. Journal of Natural Gas Science and Engineering, 2016, 35: 980–985
CrossRef
Google scholar
|
[347] |
Mosleh S, Mozdianfard M, Hemmati M, Khanbabaei G. Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation. Journal of Polymer Research, 2016, 23(6): 120
CrossRef
Google scholar
|
[348] |
Scofield J M, Gurr P A, Kim J, Fu Q, Kentish S E, Qiao G G. Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes. Journal of Membrane Science, 2016, 499: 191–200
CrossRef
Google scholar
|
[349] |
Solimando X, Lherbier C, Babin J, Arnal Herault C, Romero E, Acherar S, Jamart Gregoire B, Barth D, Roizard D, Jonquieres A. Pseudopeptide bioconjugate additives for CO2 separation membranes. Polymer International, 2016, 65(12): 1464–1473
CrossRef
Google scholar
|
[350] |
Wu D, Zhao L, Vakharia V K, Salim W, Ho W W. Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO2 separation: from lab to pilot scale. Journal of Membrane Science, 2016, 510: 58–71
CrossRef
Google scholar
|
[351] |
Azizi N, Arzani M, Mahdavi H R, Mohammadi T. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470
CrossRef
Google scholar
|
[352] |
Azizi N, Mohammadi T, Behbahani R M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51
CrossRef
Google scholar
|
[353] |
Azizi N, Mohammadi T, Behbahani R M. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of Energy Chemistry, 2017, 26(3): 454–465
CrossRef
Google scholar
|
[354] |
Isfahani A P, Sadeghi M, Wakimoto K, Gibbons A H, Bagheri R, Sivaniah E, Ghalei B. Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes. Journal of Membrane Science, 2017, 542: 143–149
CrossRef
Google scholar
|
[355] |
Jung J P, Park C H, Lee J H, Bae Y S, Kim J H. Room-temperature, one-pot process for CO2 capture membranes based on PEMA-g-PPG graft copolymer. Chemical Engineering Journal, 2017, 313: 1615–1622
CrossRef
Google scholar
|
[356] |
Prasad B, Mandal B. CO2 separation performance by chitosan/tetraethylenepentamine/poly(ether sulfone) composite membrane. Journal of Applied Polymer Science, 2017, 134(34): 45206
CrossRef
Google scholar
|
[357] |
Taniguchi I, Wada N, Kinugasa K, Higa M. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine). Open Physics, 2017, 15(1): 662–670
CrossRef
Google scholar
|
[358] |
Tong Z, Ho W W. New sterically hindered polyvinylamine membranes for CO2 separation and capture. Journal of Membrane Science, 2017, 543: 202–211
CrossRef
Google scholar
|
[359] |
Himeno S, Tomita T, Suzuki K, Nakayama K, Yajima K, Yoshida S. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Industrial & Engineering Chemistry Research, 2007, 46(21): 6989–6997
CrossRef
Google scholar
|
[360] |
Hudiono Y C, Carlisle T K, Bara J E, Zhang Y, Gin D L, Noble R D. A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials. Journal of Membrane Science, 2010, 350(1-2): 117–123
CrossRef
Google scholar
|
[361] |
Junaidi M, Khoo C, Leo C, Ahmad A. The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous and Mesoporous Materials, 2014, 192: 52–59
CrossRef
Google scholar
|
[362] |
Kim J, Abouelnasr M, Lin L C, Smit B. Large-scale screening of zeolite structures for CO2 membrane separations. Journal of the American Chemical Society, 2013, 135(20): 7545–7552
CrossRef
Google scholar
|
[363] |
Korelskiy D, Grahn M, Ye P, Zhou M, Hedlund J. A study of CO2/CO separation by sub-micron b-oriented MFI membranes. Royal Society of ChemistryAdvances, 2016, 6(70): 65475–65482
CrossRef
Google scholar
|
[364] |
Kosinov N, Auffret C, Gücüyener C, Szyja B M, Gascon J, Kapteijn F, Hensen E J. High flux high-silica SSZ-13 membrane for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 13083–13092
CrossRef
Google scholar
|
[365] |
Lai L S, Yeong Y F, Lau K K, Shariff A M. Single and binary CO2/CH4 separation of a zeolitic imidazolate framework-8 membrane. Chemical Engineering & Technology, 2017, 40(6): 1031–1042
CrossRef
Google scholar
|
[366] |
Li X, Remias J E, Neathery J K, Liu K. Liu K. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application. Journal of Membrane Science, 2011, 366(1-2): 220–228
CrossRef
Google scholar
|
[367] |
Maghsoudi H, Soltanieh M. Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. Journal of Membrane Science, 2014, 470: 159–165
CrossRef
Google scholar
|
[368] |
Mizukami K, Takaba H, Kobayashi Y, Oumi Y, Belosludov R V, Takami S, Kubo M, Miyamoto A. Molecular dynamics calculations of CO2/N2 mixture through the NaY type zeolite membrane. Journal of Membrane Science, 2001, 188(1): 21–28
CrossRef
Google scholar
|
[369] |
Sandström L, Sjöberg E, Hedlund J. Very high flux MFI membrane for CO2 separation. Journal of Membrane Science, 2011, 380(1-2): 232–240
CrossRef
Google scholar
|
[370] |
Sun C, Srivastava D J, Grandinetti P J, Dutta P K. Synthesis of chabazite/polymer composite membrane for CO2/N2 separation. Microporous and Mesoporous Materials, 2016, 230: 208–216
CrossRef
Google scholar
|
[371] |
Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Advanced Materials, 2017, 29(32): 1606999
CrossRef
Google scholar
|
[372] |
Yin X, Chu N, Yang J, Wang J, Li Z. Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation. International Journal of Greenhouse Gas Control, 2013, 15: 55–64
CrossRef
Google scholar
|
[373] |
Zhou M, Korelskiy D, Ye P, Grahn M, Hedlund J. A uniformly oriented MFI membrane for improved CO2 separation. Angewandte Chemie International Edition, 2014, 53(13): 3492–3495
CrossRef
Google scholar
|
[374] |
Kangas J, Sandström L, Malinen I, Hedlund J, Tanskanen J. Maxwell-Stefan modeling of the separation of H2 and CO2 at high pressure in an MFI membrane. Journal of Membrane Science, 2013, 435: 186–206
CrossRef
Google scholar
|
[375] |
Lee H, Park S C, Roh J S, Moon G H, Shin J E, Kang Y S, Park H B. Metal-organic frameworks grown on a porous planar template with an exceptionally high surface area: promising nanofiller platforms for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(43): 22500–22505
CrossRef
Google scholar
|
[376] |
An W, Swenson P, Wu L, Waller T, Ku A, Kuznicki S M. Selective separation of hydrogen from C1/C2 hydrocarbons and CO2 through dense natural zeolite membranes. Journal of Membrane Science, 2011, 369(1-2): 414–419
CrossRef
Google scholar
|
[377] |
Banihashemi F, Pakizeh M, Ahmadpour A. CO2 separation using PDMS/ZSM-5 zeolite composite membrane. Separation and Purification Technology, 2011, 79(3): 293–302
CrossRef
Google scholar
|
[378] |
Chew T L, Ahmad A L, Bhatia S. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chemical Engineering Journal, 2011, 171(3): 1053–1059
CrossRef
Google scholar
|
[379] |
Hao L, Li P, Yang T, Chung T S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231
CrossRef
Google scholar
|
[380] |
Kwon W T, Kim S R, Kim E B, Bae S Y, Kim Y. H2/CO2 gas separation characteristic of zeolite membrane at high temperature. In: Advanced Materials Research. Zürich, Switzerland: Trans Tech Publications, Ltd., 2007, 267–270
|
[381] |
Lai L S, Yeong Y F, Lau K K, Shariff A M. Synthesis of zeolitic imidazolate frameworks (ZIF)-8 membrane and its process optimization study in separation of CO2 from natural gas. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2017, 92(2): 420–431
CrossRef
Google scholar
|
[382] |
Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1-2): 36–40
CrossRef
Google scholar
|
[383] |
Ohta Y, Takaba H, Nakao S I. A combinatorial dynamic Monte Carlo approach to finding a suitable zeolite membrane structure for CO2/N2 separation. Microporous and Mesoporous Materials, 2007, 101(1-2): 319–323
CrossRef
Google scholar
|
[384] |
Song Z, Qiu F, Zaia E W, Wang Z, Kunz M, Guo J, Brady M, Mi B, Urban J J. Dual-channel, molecular-sieving core/shell ZIF@ MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation. Nano Letters, 2017, 17(11): 6752–6758
CrossRef
Google scholar
|
[385] |
Tzialla O, Veziri C, Papatryfon X, Beltsios K, Labropoulos A, Iliev B, Adamova G, Schubert T, Kroon M, Francisco M, Zubeir L F, Romanos G E, Karanikolos G N. Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440
CrossRef
Google scholar
|
[386] |
Ramsay J, Kallus S. Zeolite membranes. In: Membrane Science and Technology. Vol 6. Amsterdam: Elsevier, 2000, 373–395
|
[387] |
Fan T, Xie W, Ji X, Liu C, Feng X, Lu X. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521
CrossRef
Google scholar
|
[388] |
Hu L, Cheng J, Li Y, Liu J, Zhang L, Zhou J, Cen K. Composites of ionic liquid and amine-modified SAPO-34 improve CO2 separation of CO2-selective polymer membranes. Applied Surface Science, 2017, 410: 249–258
CrossRef
Google scholar
|
[389] |
Iarikov D, Hacarlioglu P, Oyama S. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chemical Engineering Journal, 2011, 166(1): 401–406
CrossRef
Google scholar
|
[390] |
Karousos D S, Labropoulos A I, Sapalidis A, Kanellopoulos N K, Iliev B, Schubert T J, Romanos G E. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chemical Engineering Journal, 2017, 313: 777–790
CrossRef
Google scholar
|
[391] |
Karunakaran M, Villalobos L F, Kumar M, Shevate R, Akhtar F H, Peinemann K V. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(2): 649–656
CrossRef
Google scholar
|
[392] |
Li P, Paul D R, Chung T S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chemistry, 2012, 14(4): 1052–1063
CrossRef
Google scholar
|
[393] |
Li P, Pramoda K, Chung T S. CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes. Industrial & Engineering Chemistry Research, 2011, 50(15): 9344–9353
CrossRef
Google scholar
|
[394] |
Li Y, Rui Z, Xia C, Anderson M, Lin Y. Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane. Catalysis Today, 2009, 148(3-4): 303–309
CrossRef
Google scholar
|
[395] |
Liu Z, Liu C, Li L, Qin W, Xu A. CO2 separation by supported ionic liquid membranes and prediction of separation performance. International Journal of Greenhouse Gas Control, 2016, 53: 79–84
CrossRef
Google scholar
|
[396] |
Lu J G, Ge H, Chen Y, Ren R T, Xu Y, Zhao Y X, Zhao X, Qian H. CO2 capture using a functional protic ionic liquid by membrane absorption. Journal of the Energy Institute, 2017, 90(6): 933–940
CrossRef
Google scholar
|
[397] |
Lu J G, Lu C T, Chen Y, Gao L, Zhao X, Zhang H, Xu Z W. CO2 capture by membrane absorption coupling process: application of ionic liquids. Applied Energy, 2014, 115: 573–581
CrossRef
Google scholar
|
[398] |
Lu S C, Khan A L, Vankelecom I F. Polysulfone-ionic liquid based membranes for CO2/N2 separation with tunable porous surface features. Journal of Membrane Science, 2016, 518: 10–20
CrossRef
Google scholar
|
[399] |
Mannan H, Mohshim D, Mukhtar H, Murugesan T, Man Z, Bustam M. Synthesis, characterization and CO2 separation performance of polyether sulfone/[EMIM][Tf2N] ionic liquid-polymeric membranes (ILPMs). Journal of Industrial and Engineering Chemistry, 2017, 54: 98–106
CrossRef
Google scholar
|
[400] |
Ramli N A, Hashim N A, Aroua M K. Prediction of CO2/O2 absorption selectivity using supported ionic liquid membranes (SILMs) for gas-liquid membrane contactor. Chemical Engineering Communications, 2018, 205(3): 295–310
CrossRef
Google scholar
|
[401] |
Tomé L C, Patinha D J, Freire C S, Rebelo L P N, Marrucho I M. CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. Royal Society of Chemistry Advances, 2013, 3(30): 12220–12229
CrossRef
Google scholar
|
[402] |
Ur Rehman R, Rafiq S, Muhammad N, Khan A L, Ur Rehman A, TingTing L, Saeed M, Jamil F, Ghauri M, Gu X. Development of ethanolamine-based ionic liquid membranes for efficient CO2/CH4 separation. Journal of Applied Polymer Science, 2017, 134(44): 45395
CrossRef
Google scholar
|
[403] |
Yoon K W, Kim H, Kang Y S, Kang S W. 1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO2 separation performance. Chemical Engineering Journal, 2017, 320: 50–54
CrossRef
Google scholar
|
[404] |
Zhang X M, Tu Z H, Li H, Li L, Wu Y T, Hu X B. Supported protic-ionic-liquid membranes with facilitated transport mechanism for the selective separation of CO2. Journal of Membrane Science, 2017, 527: 60–67
CrossRef
Google scholar
|
[405] |
Chen H, Kovvali A, Sirkar K. Selective CO2 Separation from CO2-N2 mixtures by immobilized glycine-Na-glycerol membranes. Industrial & Engineering Chemistry Research, 2000, 39(7): 2447–2458
CrossRef
Google scholar
|
[406] |
Ilyas A, Muhammad N, Gilani M A, Ayub K, Vankelecom I F, Khan A L. Supported protic ionic liquid membrane based on 3-(trimethoxysilyl) propan-1-aminium acetate for the highly selective separation of CO2. Journal of Membrane Science, 2017, 543: 301–309
CrossRef
Google scholar
|
[407] |
Ranjbaran F, Kamio E, Matsuyama H. Ion gel membrane with tunable inorganic/organic composite network for CO2 separation. Industrial & Engineering Chemistry Research, 2017, 56(44): 12763–12772
CrossRef
Google scholar
|
[408] |
Jindaratsamee P, Shimoyama Y, Ito A. Amine/glycol liquid membranes for CO2 recovery form air. Journal of Membrane Science, 2011, 385: 171–176
CrossRef
Google scholar
|
[409] |
Hussain A. Three stage membrane process for CO2 capture from natural gas. AA, 2017, 50:1
|
[410] |
Niwa M, Ohya H, Tanaka Y, Yoshikawa N, Matsumoto K, Negishi Y. Separation of gaseous mixtures of CO2 and CH4 using a composite microporous glass membrane on ceramic tubing. Journal of Membrane Science, 1988, 39(3): 301–314
CrossRef
Google scholar
|
[411] |
Saha S, Chakma A. Separation of CO2 from gas mixtures with liquid membranes. Energy Conversion and Management, 1992, 33(5-8): 413–420
CrossRef
Google scholar
|
[412] |
Xu L, Zhang L, Chen H. Study on CO2 removal in air by hydrogel membranes. Desalination, 2002, 148(1-3): 309–313
CrossRef
Google scholar
|
[413] |
Jordal K, Bredesen R, Kvamsdal H, Bolland O. Integration of H2-separating membrane technology in gas turbine processes for CO2 capture. Energy, 2004, 29(9-10): 1269–1278
CrossRef
Google scholar
|
[414] |
Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2004, 241(1): 121–135
CrossRef
Google scholar
|
[415] |
Moon J H, Ahn H, Hyun S H, Lee C H. Separation characteristics of tetrapropylammoniumbromide templating silica/alumina composite membrane in CO2/N2, CO2/H2 and CH4/H2 systems. Korean Journal of Chemical Engineering, 2004, 21(2): 477–487
CrossRef
Google scholar
|
[416] |
Li S, Alvarado G, Noble R D, Falconer J L. Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. Journal of Membrane Science, 2005, 251(1-2): 59–66
CrossRef
Google scholar
|
[417] |
Li S, Martinek J G, Falconer J L, Noble R D, Gardner T Q. High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial & Engineering Chemistry Research, 2005, 44(9): 3220–3228
CrossRef
Google scholar
|
[418] |
Jordal K, Bolland O, Möller B F, Torisson T. Optimization with genetic algorithms of a gas turbine cycle with H2-separating membrane reactor for CO2 capture. International Journal of Green Energy, 2005, 2(2): 167–180
CrossRef
Google scholar
|
[419] |
Sakamoto Y, Nagata K, Yogo K, Yamada K. Preparation and CO2 separation properties of amine-modified mesoporous silica membranes. Microporous and Mesoporous Materials, 2007, 101(1-2): 303–311
CrossRef
Google scholar
|
[420] |
Xiao S, Feng X, Huang R Y. Trimesoyl chloride crosslinked chitosan membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. Journal of Membrane Science, 2007, 306(1-2): 36–46
CrossRef
Google scholar
|
[421] |
Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H. Selective separation of CO2 by using novel facilitated transport membrane at elevated temperatures and pressures. Journal of Membrane Science, 2007, 291(1-2): 157–164
CrossRef
Google scholar
|
[422] |
Paul S, Ghoshal A K, Mandal B. Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chemical Engineering Journal, 2008, 144(3): 352–360
CrossRef
Google scholar
|
[423] |
Kai T, Kazama S, Fujioka Y. Development of cesium-incorporated carbon membranes for CO2 separation under humid conditions. Journal of Membrane Science, 2009, 342(1-2): 14–21
CrossRef
Google scholar
|
[424] |
Nistor C, Shishatskiy S, Popa M, Nunes S P. CO2 selective membranes based on epoxy silane. Revue Roumaine de Chimie, 2009, 54: 603–610
|
[425] |
Li S, Carreon M A, Zhang Y, Funke H H, Noble R D, Falconer J L. Scale-up of SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2010, 352(1-2): 7–13
CrossRef
Google scholar
|
[426] |
Scholes C A, Smith K H, Kentish S E, Stevens G W. CO2 capture from pre-combustion processes—strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 2010, 4(5): 739–755
CrossRef
Google scholar
|
[427] |
Tiscornia I, Kumakiri I, Bredesen R, Téllez C, Coronas J. Microporous titanosilicate ETS-10 membrane for high pressure CO2 separation. Separation and Purification Technology, 2010, 73(1): 8–12
CrossRef
Google scholar
|
[428] |
Favre N, Pierre A C. Synthesis and behaviour of hybrid polymer-silica membranes made by sol gel process with adsorbed carbonic anhydrase enzyme, in the capture of CO2. Journal of Sol-Gel Science and Technology, 2011, 60(2): 177–188
CrossRef
Google scholar
|
[429] |
Lotrič A, Sekavčnik M, Kunze C, Spliethoff H. Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO2 capture. Chinese Journal of Mechanical Engineering, 2011, 57(12): 911–926
|
[430] |
Martin F Z, Dijkstra J W, Boon J, Meuldijk J. A membrane reformer with permeate side combustion for CO2 capture: modeling and design. Energy Procedia, 2011, 4: 707–714
CrossRef
Google scholar
|
[431] |
Ostwal M, Singh R P, Dec S F, Lusk M T, Way J D. 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation. Journal of Membrane Science, 2011, 369(1-2): 139–147
CrossRef
Google scholar
|
[432] |
Venna S R, Carreon M A. Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir, 2011, 27(6): 2888–2894
CrossRef
Google scholar
|
[433] |
Wade J L, Lee C, West A C, Lackner K S. Composite electrolyte membranes for high temperature CO2 separation. Journal of Membrane Science, 2011, 369(1-2): 20–29
CrossRef
Google scholar
|
[434] |
Chabanon E, Roizard D, Favre E. Modelling strategies of membrane contactor processes for CO2 post-combustion capture: a critical reassessment. Procedia Engineering, 2012, 44: 343–346
CrossRef
Google scholar
|
[435] |
Lau C H, Paul D R, Chung T S. Molecular design of nanohybrid gas separation membranes for optimal CO2 separation. Polymer, 2012, 53(2): 454–465
CrossRef
Google scholar
|
[436] |
Li H, Pieterse J, Dijkstra J, Boon J, Van Den Brink R, Jansen D. Bench-scale WGS membrane reactor for CO2 capture with co-production of H2. International Journal of Hydrogen Energy, 2012, 37(5): 4139–4143
CrossRef
Google scholar
|
[437] |
Madhusoodana C, Patil M, Aminabhavi T. Ceramic supported composite membranes of hydroxy-ethyl-cellulose loaded with AL-MCM-41 for CO2 separation. Procedia Engineering, 2012, 44: 108–109
CrossRef
Google scholar
|
[438] |
Modarresi S, Soltanieh M, Mousavi S A, Shabani I. Effect of low-frequency oxygen plasma on polysulfone membranes for CO2/CH4 Separation. Journal of Applied Polymer Science, 2012, 124(S1): E199–E204
CrossRef
Google scholar
|
[439] |
Rongwong W, Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. Journal of Membrane Science, 2012, 392: 38–47
CrossRef
Google scholar
|
[440] |
Smart S, Vente J, Da Costa J D. High temperature H2/CO2 separation using cobalt oxide silica membranes. International Journal of Hydrogen Energy, 2012, 37(17): 12700–12707
CrossRef
Google scholar
|
[441] |
Bae T H, Long J R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 2013, 6(12): 3565–3569
CrossRef
Google scholar
|
[442] |
Choi J H, Park M J, Kim J, Ko Y, Lee S H, Baek I. Modelling and analysis of pre-combustion CO2 capture with membranes. Korean Journal of Chemical Engineering, 2013, 30(6): 1187–1194
CrossRef
Google scholar
|
[443] |
Koutsonikolas D E, Kaldis S P, Pantoleontos G T, Zaspalis V T, Sakellaropoulos G P. Techno-economic assessment of polymeric, ceramic and metallic membranes integration in an advanced IGCC process for H2 production and CO2 capture. Trans, 2013, 35: 715–720
|
[444] |
Lee C B, Lee S W, Park J S, Lee D W, Hwang K R, Ryi S K, Kim S H. Long-term CO2 capture tests of Pd-based composite membranes with module configuration. International Journal of Hydrogen Energy, 2013, 38(19): 7896–7903
CrossRef
Google scholar
|
[445] |
Lin Y F, Chen C H, Tung K L, Wei T Y, Lu S Y, Chang K S. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements. ChemSusChem, 2013, 6(3): 437–442
CrossRef
Google scholar
|
[446] |
Ryi S K, Lee C B, Lee S W, Park J S. Pd-based composite membrane and its high-pressure module for pre-combustion CO2 capture. Energy, 2013, 51: 237–242
CrossRef
Google scholar
|
[447] |
Zhang K, Zou Y, Su C, Shao Z, Liu L, Wang S, Liu S. CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. Journal of Membrane Science, 2013, 427: 168–175
CrossRef
Google scholar
|
[448] |
Zhu X, Chai S, Tian C, Fulvio P F, Han K S, Hagaman E W, Veith G M, Mahurin S M, Brown S, Liu H, Dai S. Synthesis of porous, nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO2 separation. Macromolecular Rapid Communications, 2013, 34(5): 452–459
CrossRef
Google scholar
|
[449] |
Zhao Y, Jung B T, Ansaloni L, Ho W W. Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation. Journal of Membrane Science, 2014, 459: 233–243
CrossRef
Google scholar
|
[450] |
Deng L, Hägg M B. Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation. International Journal of Greenhouse Gas Control, 2014, 26: 127–134
CrossRef
Google scholar
|
[451] |
Lin Y F, Ko C C, Chen C H, Tung K L, Chang K S, Chung T W. Sol-gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors. Applied Energy, 2014, 129: 25–31
CrossRef
Google scholar
|
[452] |
Patel R, Kim S J, Roh D K, Kim J H. Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO2/N2 separation membranes. Chemical Engineering Journal, 2014, 254: 46–53
CrossRef
Google scholar
|
[453] |
Pedram M Z, Omidkhah M, Amooghin A E. Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 74–82
CrossRef
Google scholar
|
[454] |
Rabiee H, Soltanieh M, Mousavi S A, Ghadimi A. Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes. Journal of Membrane Science, 2014, 469: 43–58
CrossRef
Google scholar
|
[455] |
Ryi S K, Lee S W, Park J W, Oh D K, Park J S, Kim S S. Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catalysis Today, 2014, 236: 49–56
CrossRef
Google scholar
|
[456] |
Scholes C A, Ho M T, Aguiar A A, Wiley D E, Stevens G W, Kentish S E. Membrane gas separation processes for CO2 capture from cement kiln flue gas. International Journal of Greenhouse Gas Control, 2014, 24: 78–86
CrossRef
Google scholar
|
[457] |
Shi H. Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO2-CH4 separation. New Journal of Chemistry, 2014, 38(11): 5276–5278
CrossRef
Google scholar
|
[458] |
Taniguchi I, Fujikawa S. CO2 separation with nano-thick polymeric membrane for pre-combustion. Energy Procedia, 2014, 63: 235–242
CrossRef
Google scholar
|
[459] |
Tseng H H, Chang S H, Wey M Y. A carbon gutter layer-modified a-Al2O3 substrate for PPO membrane fabrication and CO2 separation. Journal of Membrane Science, 2014, 454: 51–61
CrossRef
Google scholar
|
[460] |
Wu T, Wang B, Lu Z, Zhou R, Chen X. Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 2014, 471: 338–346
CrossRef
Google scholar
|
[461] |
Zhang L, Gong Y, Brinkman K S, Wei T, Wang S, Huang K. Flux of silver-carbonate membranes for post-combustion CO2 capture: the effects of membrane thickness, gas concentration and time. Journal of Membrane Science, 2014, 455: 162–167
CrossRef
Google scholar
|
[462] |
Zhang L, Gong Y, Yaggie J, Wang S, Romito K, Huang K. Surface modified silver-carbonate mixed conducting membranes for high flux CO2 separation with enhanced stability. Journal of Membrane Science, 2014, 453: 36–41
CrossRef
Google scholar
|
[463] |
Azizi M, Mousavi S A. CO2/H2 separation using a highly permeable polyurethane membrane: molecular dynamics simulation. Journal of Molecular Structure, 2015, 1100: 401–414
CrossRef
Google scholar
|
[464] |
Kammakakam I, Nam S, Kim T H. Ionic group-mediated crosslinked polyimide membranes for enhanced CO2 separation. Royal Society of Chemistry Advances, 2015, 5(86): 69907–69914
CrossRef
Google scholar
|
[465] |
Konruang S, Sirijarukul S, Wanichapichart P, Yu L, Chittrakarn T. Ultraviolet-ray treatment of polysulfone membranes on the O2/N2 and CO2/CH4 separation performance. Journal of Applied Polymer Science, 2015, 132(25): 42074
CrossRef
Google scholar
|
[466] |
Lin Y F, Chang J M, Ye Q, Tung K L. Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors. Applied Energy, 2015, 154: 21–25
CrossRef
Google scholar
|
[467] |
Nabian N, Ghoreyshi A A, Rahimpour A, Shakeri M. Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane. Korean Journal of Chemical Engineering, 2015, 32(11): 2204–2211
CrossRef
Google scholar
|
[468] |
Nwogu N C, Kajama M N, Osueke G, Gobina E. High performance valuation of CO2 gas separation ceramic membrane system. In: Ao S I, Gelman L, Hukins D W L, Hunter A, Korsunsky A M, eds. Proceedings of the 2015 World Congress on Engineering (WCE 2015). Hong Kong: Newswood Academic Publishing, 2015, 824–827
|
[469] |
Qiao Z, Wang Z, Yuan S, Wang J, Wang S. Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation. Journal of Membrane Science, 2015, 475: 290–302
CrossRef
Google scholar
|
[470] |
Shin D Y, Hwang K R, Park J S, Park M J. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO2 capture from H2/CO2 binary gas mixture. Korean Journal of Chemical Engineering, 2015, 32(7): 1414–1421
CrossRef
Google scholar
|
[471] |
Sun C, Wen B, Bai B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chemical Engineering Science, 2015, 138: 616–621
CrossRef
Google scholar
|
[472] |
Tong J, Zhang L, Fang J, Han M, Huang K. Electrochemical capture of CO2 from natural gas using a high-temperature ceramic-carbonate membrane. Journal of the Electrochemical Society, 2015, 162(4): E43–E46
CrossRef
Google scholar
|
[473] |
Wang B, Sun C, Li Y, Zhao L, Ho W W, Dutta P K. Rapid synthesis of faujasite/polyethersulfone composite membrane and application for CO2/N2 separation. Microporous and Mesoporous Materials, 2015, 208: 72–82
CrossRef
Google scholar
|
[474] |
Wang N, Mundstock A, Liu Y, Huang A, Caro J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chemical Engineering Science, 2015, 124: 27–36
CrossRef
Google scholar
|
[475] |
Wang S, Tian Z, Feng J, Wu H, Li Y, Liu Y, Li X, Xin Q, Jiang Z. Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473: 310–317
CrossRef
Google scholar
|
[476] |
Xin Q, Gao Y, Wu X, Li C, Liu T, Shi Y, Li Y, Jiang Z, Wu H, Cao X. Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. Journal of Membrane Science, 2015, 488: 13–29
CrossRef
Google scholar
|
[477] |
Xing W, Peters T, Fontaine M L, Evans A, Henriksen P P, Norby T, Bredesen R. Steam-promoted CO2 flux in dual-phase CO2 separation membranes. Journal of Membrane Science, 2015, 482: 115–119
CrossRef
Google scholar
|
[478] |
Zheng Y, Hu N, Wang H, Bu N, Zhang F, Zhou R. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. Journal of Membrane Science, 2015, 475: 303–310
CrossRef
Google scholar
|
[479] |
Zhou R, Wang H, Wang B, Chen X, Li S, Yu M. Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation. Industrial & Engineering Chemistry Research, 2015, 54(30): 7516–7523
CrossRef
Google scholar
|
[480] |
Dai Z, Bai L, Hval K N, Zhang X, Zhang S, Deng L. Pebax®/TSIL blend thin film composite membranes for CO2 separation. Science China. Chemistry, 2016, 59(5): 538–546
CrossRef
Google scholar
|
[481] |
Dong G, Zhang Y, Hou J, Shen J, Chen V. Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(18): 5403–5414
CrossRef
Google scholar
|
[482] |
Dong L, Zhang C, Bai Y, Shi D, Li X, Zhang H, Chen M. High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO2/N2 separation. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3486–3496
CrossRef
Google scholar
|
[483] |
Jeon H, Kim D J, Park M S, Ryu D Y, Kim J H. Amphiphilic graft copolymer nanospheres: from colloidal self-assembly to CO2 capture membranes. ACS Applied Materials & Interfaces, 2016, 8(14): 9454–9461
CrossRef
Google scholar
|
[484] |
Karimi S, Korelskiy D, Mortazavi Y, Khodadadi A A, Sardari K, Esmaeili M, Antzutkin O N, Shah F U, Hedlund J. High flux acetate functionalized silica membranes based on in-situ co-condensation for CO2/N2 separation. Journal of Membrane Science, 2016, 520: 574–582
CrossRef
Google scholar
|
[485] |
Li W, Zhang Y, Su P, Xu Z, Zhang G, Shen C, Meng Q. Metal-organic framework channelled graphene composite membranes for H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18747–18752
CrossRef
Google scholar
|
[486] |
Lin Y F, Kuo J W. Mesoporous bis(trimethoxysilyl) hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture. Chemical Engineering Journal, 2016, 300: 29–35
CrossRef
Google scholar
|
[487] |
Moradi M R, Chenar M P, Noie S H. Using PDMS coated TFC-RO membranes for CO2/N2 gas separation: experimental study, modeling and optimization. Polymer Testing, 2016, 56: 287–298
CrossRef
Google scholar
|
[488] |
Mubashir M, Yeong Y F, Lau K K. Ultrasonic-assisted secondary growth of deca-dodecasil 3 rhombohedral (DD3R) membrane and its process optimization studies in CO2/CH4 separation using response surface methodology. Journal of Natural Gas Science and Engineering, 2016, 30: 50–63
CrossRef
Google scholar
|
[489] |
Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. International Journal of Greenhouse Gas Control, 2016, 53: 56–64
CrossRef
Google scholar
|
[490] |
Qin Y, Lv J, Fu X, Guo R, Li X, Zhang J, Wei Z. High-performance SPEEK/amino acid salt membranes for CO2 separation. Royal Society of Chemistry Advances, 2016, 6(3): 2252–2258
CrossRef
Google scholar
|
[491] |
Saedi S, Seidi F, Moradi F, Xiang X. Preparation and characterization of an amino-cellulose (AC) derivative for development of thin-film composite membrane for CO2/CH4 separation. Stärke, 2016, 68(7-8): 651–661
CrossRef
Google scholar
|
[492] |
Saeed M, Deng L. Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2016, 53: 254–262
CrossRef
Google scholar
|
[493] |
Wang Y, Yang Q, Li J, Yang J, Zhong C. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study. Physical Chemistry Chemical Physics, 2016, 18(12): 8352–8358
CrossRef
Google scholar
|
[494] |
Wong K, Goh P, Ismail A F. Thin film nanocomposite: the next generation selective membrane for CO2 removal. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15726–15748
CrossRef
Google scholar
|
[495] |
Zhang P, Tong J, Jee Y, Huang K. Stabilizing a high-temperature electrochemical silver-carbonate CO2 capture membrane by atomic layer deposition of a ZrO2 overcoat. Chemical Communications, 2016, 52(63): 9817–9820
CrossRef
Google scholar
|
[496] |
Zhong S, Bu N, Zhou R, Jin W, Yu M, Li S. Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations. Journal of Membrane Science, 2016, 520: 507–514
CrossRef
Google scholar
|
[497] |
Benito J, Sánchez Laínez J, Zornoza B, Martín S, Carta M, Malpass Evans R, Téllez C, McKeown N B, Coronas J, Gascón I. Ultrathin composite polymeric membranes for CO2/N2 separation with minimum thickness and high CO2 permeance. ChemSusChem, 2017, 10(20): 4014–4017
CrossRef
Google scholar
|
[498] |
Kgaphola K, Sigalas I, Daramola M O. Synthesis and characterization of nanocomposite SAPO-34/ceramic membrane for post-combustion CO2 capture. Asia-Pacific Journal of Chemical Engineering, 2017, 12(6): 894–904
CrossRef
Google scholar
|
[499] |
Khakpay A, Rahmani F, Nouranian S, Scovazzo P. Molecular insights on the CH4/CO2 separation in nanoporous graphene and graphene oxide separation platforms: adsorbents versus membranes. Journal of Physical Chemistry C, 2017, 121(22): 12308–12320
CrossRef
Google scholar
|
[500] |
Kim N U, Park B J, Choi Y, Lee K B, Kim J H. High-performance self-cross-linked PGP-POEM comb copolymer membranes for CO2 capture. Macromolecules, 2017, 50(22): 8938–8947
CrossRef
Google scholar
|
[501] |
Kline G K, Weidman J R, Zhang Q, Guo R. Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations. Journal of Membrane Science, 2017, 544: 25–34
CrossRef
Google scholar
|
[502] |
Mahdavi H R, Azizi N, Mohammadi T. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/g-Al2O3 membrane for CO2/CH4 separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67
CrossRef
Google scholar
|
[503] |
Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. Journal of Membrane Science, 2017, 522: 351–362
CrossRef
Google scholar
|
[504] |
Qu Y, Li F, Zhao M. Theoretical design of highly efficient CO2/N2 separation membranes based on electric quadrupole distinction. Journal of Physical Chemistry C, 2017, 121(33): 17925–17931
CrossRef
Google scholar
|
[505] |
Selyanchyn R, Fujikawa S. Membrane thinning for efficient CO2 capture. Science and Technology of Advanced Materials, 2017, 18(1): 816–827
CrossRef
Google scholar
|
[506] |
Shafie S N A, Man Z, Idris A. Development of polycarbonate-silica matrix membrane for CO2/CH4 separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020129
|
[507] |
Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Kitamura Y. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy, 2017, 124: 29–39
CrossRef
Google scholar
|
[508] |
Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Science and Technology of Advanced Materials, 2017, 18(1): 950–958
CrossRef
Google scholar
|
[509] |
Wang P, Li W, Du C, Zheng X, Sun X, Yan Y, Zhang J. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Computational Materials Science, 2017, 140: 284–289
CrossRef
Google scholar
|
[510] |
Wang S, Xie Y, He G, Xin Q, Zhang J, Yang L, Li Y, Wu H, Zhang Y, Guiver M D, Jiang Z. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angewandte Chemie International Edition, 2017, 56(45): 14246–14251
CrossRef
Google scholar
|
[511] |
Zhang C, Zhang W, Gao H, Bai Y, Sun Y, Chen Y. Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation. Journal of Membrane Science, 2017, 528: 72–81
CrossRef
Google scholar
|
[512] |
Zhang Y, Wang H, Zhang Y, Ding X, Liu J. Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation. Separation and Purification Technology, 2017, 189: 128–137
CrossRef
Google scholar
|
[513] |
Zhao L, Sang P, Guo S, Liu X, Li J, Zhu H, Guo W. Promising monolayer membranes for CO2/N2/CH4 separation: graphdiynes modified respectively with hydrogen, fluorine and oxygen atoms. Applied Surface Science, 2017, 405: 455–464
CrossRef
Google scholar
|
[514] |
Zhu L, Swihart M T, Lin H. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 19914–19923
CrossRef
Google scholar
|
[515] |
Constantinou A, Barrass S, Gavriilidis A. CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH. Green Processing and Synthesis, 2018, 7(6): 471–476
CrossRef
Google scholar
|
[516] |
Russo G, Prpich G, Anthony E J, Montagnaro F, Jurado N, Di Lorenzo G, Darabkhani H G. Selective-exhaust gas recirculation for CO2 capture using membrane technology. Journal of Membrane Science, 2018, 549: 649–659
CrossRef
Google scholar
|
[517] |
Yu L, Kanezashi M, Nagasawa H, Moriyama N, Tsuru T, Ito K. Enhanced CO2 separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH3Cl. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(5): 1528–1539
CrossRef
Google scholar
|
[518] |
Zhang N, Peng D, Wu H, Ren Y, Yang L, Wu X, Wu Y, Qu Z, Jiang Z, Cao X. Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549: 670–679
CrossRef
Google scholar
|
[519] |
Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. Optimization of coating solution viscosity of hollow fiber-supported polydimethylsiloxane membrane for CO2/H2 separation. Journal of Applied Polymer Science, 2018, 135(5): 45765
CrossRef
Google scholar
|
[520] |
Ovalle Encinia O, Pfeiffer H, Ortiz Landeros J. Ce0.85Sm0.15O2-Sm0.6Sr0.4Al0.3Fe0.7O3 composite for the preparation of dense ceramic-carbonate membranes for CO2 separation. Journal of Membrane Science, 2018, 547: 11–18
CrossRef
Google scholar
|
[521] |
Constantinou A, Barrass S, Pronk F, Bril T, Wenn D, Shaw J, Gavriilidis A. CO2 absorption in a high efficiency silicon nitride mesh contactor. Chemical Engineering Journal, 2012, 207: 766–771
CrossRef
Google scholar
|
[522] |
Constantinou A, Gavriilidis A. CO2 absorption in a microstructured mesh reactor. Industrial & Engineering Chemistry Research, 2010, 49(3): 1041–1049
CrossRef
Google scholar
|
[523] |
Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Microporous and Mesoporous Materials, 2008, 110(2-3): 310–317
CrossRef
Google scholar
|
[524] |
Duan S, Taniguchi I, Kai T, Kazama S. Development of poly(amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated pressures. Energy Procedia, 2013, 37: 924–931
CrossRef
Google scholar
|
[525] |
Ahmad F, Lau K K, Shariff A M. Modeling and parametric study for CO2/CH4 separation using membrane processes. World Academy of Science, Engineering and Technology, 2010, 2010(4): 387–392
|
[526] |
Arias A M, Mussati M C, Mores P L, Scenna N J, Caballero J A, Mussati S F. Optimization of multi-stage membrane systems for CO2 capture from flue gas. International Journal of Greenhouse Gas Control, 2016, 53: 371–390
CrossRef
Google scholar
|
[527] |
Couling D J, Prakash K, Green W H. Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined-cycle power with CO2 capture and sequestration. Industrial & Engineering Chemistry Research, 2011, 50(19): 11313–11336
CrossRef
Google scholar
|
[528] |
Hasan M F, Baliban R C, Elia J A, Floudas C A. Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Industrial & Engineering Chemistry Research, 2012, 51(48): 15642–15664
CrossRef
Google scholar
|
[529] |
Johannessen E, Jordal K. Study of a H2 separating membrane reactor for methane steam reforming at conditions relevant for power processes with CO2 capture. Energy Conversion and Management, 2005, 46(7-8): 1059–1071
CrossRef
Google scholar
|
[530] |
Jusoh N, Lau K K, Shariff A M, Yeong Y. Capture of bulk CO2 from methane with the presence of heavy hydrocarbon using membrane process. International Journal of Greenhouse Gas Control, 2014, 22: 213–222
CrossRef
Google scholar
|
[531] |
Jusoh N, Lau K K, Yeong Y F, Shariff A M. Bulk CO2/CH4 separation for offshore operating conditions using membrane process. Sains Malaysiana, 2016, 45(11): 1707–1714
|
[532] |
Lee S H, Kim J N, Eom W H, Ryi S K, Park J S, Baek I H. Development of pilot WGS/multi-layer membrane for CO2 capture. Chemical Engineering Journal, 2012, 207: 521–525
CrossRef
Google scholar
|
[533] |
Merkel T C, Wei X, He Z, White L S, Wijmans J, Baker R W. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Industrial & Engineering Chemistry Research, 2012, 52(3): 1150–1159
CrossRef
Google scholar
|
[534] |
Nagumo R, Iwata S, Mori H. Simulated process evaluation of synthetic natural gas production based on biomass gasification and potential of CO2 capture using membrane separation Technology. Journal of the Japan Petroleum Institute, 2013, 56(6): 395–400
CrossRef
Google scholar
|
[535] |
Piroonlerkgul P, Laosiripojana N, Adesina A, Assabumrungrat S. Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for CO2 removal. Chemical Engineering and Processing: Process Intensification, 2009, 48(2): 672–682
CrossRef
Google scholar
|
[536] |
Rezvani S, Huang Y, McIlveen Wright D, Hewitt N, Mondol J D. Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. Fuel, 2009, 88(12): 2463–2472
CrossRef
Google scholar
|
[537] |
Scholes C A, Simioni M, Qader A, Stevens G W, Kentish S E. Membrane gas-solvent contactor trials of CO2 absorption from syngas. Chemical Engineering Journal, 2012, 195: 188–197
CrossRef
Google scholar
|
[538] |
Shao P, Dal Cin M M, Guiver M D, Kumar A. Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science, 2013, 427: 451–459
CrossRef
Google scholar
|
[539] |
Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie, 2015, 127(2): 588–592
CrossRef
Google scholar
|
[540] |
Skorek Osikowska A, Bartela Ł, Kotowicz J. Thermodynamic and economic evaluation of a CO2 membrane separation unit integrated into a supercritical coal-fired heat and power plant. Journal of Power Technologies, 2015, 95(3): 201–210
|
[541] |
Stanislowski J, Holmes M, Snyder A, Tolbert S, Curran T. Advanced CO2 separation technologies: coal gasification, warm-gas cleanup, and hydrogen separation membranes. Energy Procedia, 2013, 37: 2316–2326
CrossRef
Google scholar
|
[542] |
Tuinier M, Hamers H, van Sint Annaland M. Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology. International Journal of Greenhouse Gas Control, 2011, 5(6): 1559–1565
CrossRef
Google scholar
|
[543] |
Turi D, Ho M, Ferrari M, Chiesa P, Wiley D, Romano M C. CO2 capture from natural gas combined cycles by CO2 selective membranes. International Journal of Greenhouse Gas Control, 2017, 61: 168–183
CrossRef
Google scholar
|
[544] |
Wang B, Zhu D C, Zhan M C, Liu W, Chen C S. Combustion of coal-derived CO with membrane-supplied oxygen enabling CO2 capture. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(9): 2481–2484
CrossRef
Google scholar
|
[545] |
Yang D, Wang Z, Wang J, Wang S. Potential of two-stage membrane system with recycle stream for CO2 capture from postcombustion gas. Energy & Fuels, 2009, 23(10): 4755–4762
CrossRef
Google scholar
|
[546] |
Franz J, Scherer V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. Journal of Membrane Science, 2010, 359(1-2): 173–183
CrossRef
Google scholar
|
[547] |
Wang Z, Dong S, Li N, Cao X, Sheng M, Xu R, Wang B, Wu H, Ma C, Yuan Y. CO2-selective membranes: how easy is their moving from laboratory to industrial scale? In: Current Trends and Future Developments on (bio-) membranes. Amsterdam: Elsevier, 2018, 75–102
|
[548] |
Doran P. Chapter 11-Unit Operations, In: Bioprocess Engineering Principles. 2nd ed. London: Elsevier, 2013, 445–595
|
[549] |
Cui Z, Muralidhara H. Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing. Burlington: Elsevier, 2010, 1–270
|
[550] |
Yilbas B S. The Laser Cutting Process: Analysis and Applications. Amsterdam: Elsevier, 2017, 5–311
|
[551] |
Rezzadori K, Penha F M, Proner M C, Zin G, Petrus J C, Di Luccio M. Impact of organic solvents on physicochemical properties of nanofiltration and reverse-osmosis membranes. Chemical Engineering & Technology, 2019, 42(12): 2700–2708
CrossRef
Google scholar
|
[552] |
Zhang Y T, Dai X G, Xu G H, Zhang L, Zhang H Q, Liu J D, Chen H L. Modeling of CO2 mass transport across a hollow fiber membrane reactor filled with immobilized enzyme. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(7): 2069–2077
CrossRef
Google scholar
|
[553] |
Zhang Y T, Zhang L, Chen H L, Zhang H M. Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chemical Engineering Science, 2010, 65(10): 3199–3207
CrossRef
Google scholar
|
[554] |
Singh R. Membrane Technology and Engineering for Water Purification: Application, Systems Design and Operation. Oxford: Butterworth-Heinemann, 2014, 1–300
|
/
〈 | 〉 |