Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

Yiyi Fan , Jinyong Li , Saidi Wang , Xiuxia Meng , Yun Jin , Naitao Yang , Bo Meng , Jiaquan Li , Shaomin Liu

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 882 -891.

PDF (2016KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 882 -891. DOI: 10.1007/s11705-020-1990-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

Author information +
History +
PDF (2016KB)

Abstract

Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 108 mol·m2·s1·Pa1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.

Graphical abstract

Keywords

MXene / H2/CO2 separation / nickel ions / hollow fiber

Cite this article

Download citation ▾
Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu. Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Front. Chem. Sci. Eng., 2021, 15(4): 882-891 DOI:10.1007/s11705-020-1990-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu M, Gurr P A, Fu Q, Webley P A, Qiao G G. Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196

[2]

Wang J, Zhu J, Zhang Y, Liu J, Van der Bruggen B. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9(9): 2942–2957

[3]

Sunarso J, Hashim S S, Lin Y S, Liu S. Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383

[4]

Nezhad F A, Han N, Jin Y, Shen Z, Wang Y, Yang N, Liu S. Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not graphene oxides) membranes. Journal of Membrane Science, 2020, 601: 117883

[5]

Gin D L, Noble R D. Designing the next generation of chemical separation membranes. Science, 2011, 332(6030): 674–676

[6]

Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530

[7]

Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663

[8]

Lau C H, Li P, Li F, Chung T S, Paul D R. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38(5): 740–766

[9]

Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn H J, Bao Y, Yu M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98

[10]

Battersby S, Tasaki T, Smart S, Ladewig B, Liu S, Duke M C, Rudolph V, Diniz da Costa J C. Performance of cobalt silica membranes in gas mixture separation. Journal of Membrane Science, 2009, 329(1-2): 91–98

[11]

Liu Y, Wang N, Cao Z, Caro J. Molecular sieving through interlayer galleries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1235–1238

[12]

Wang X, Chi C, Zhang K, Qian Y, Gupta K M, Kang Z, Jiang J, Zhao D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8(1): 14460–14469

[13]

Jeong H K, Nair S, Vogt T, Dickinson L C, Tsapatsis M. A highly crystalline layered silicate with three-dimensionally microporous layers. Nature Materials, 2003, 2(1): 53–58

[14]

Tsapatsis M. 2-Dimensional zeolites. AIChE Journal, 2014, 60(7): 2374–2381

[15]

Agrawal K V, Topuz B, Pham T C, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-Nanosheet seed layers. Advanced Materials, 2015, 27(21): 3243–3249

[16]

Venna S R, Lartey M, Li T, Spore A, Kumar S, Nulwala H B, Luebke D R, Rosi N L, Albenze E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(9): 5014–5022

[17]

Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359

[18]

Zhao Z, Ma X, Kasik A, Li Z, Lin Y S. Gas separation properties of metal organic framework (MOF-5) membranes. Industrial & Engineering Chemistry Research, 2012, 52(3): 1102–1108

[19]

Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608

[20]

Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50(86): 13089–13092

[21]

Kang J, Zhang H, Duan X, Sun H, Tan X, Liu S, Wang S. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. Chemical Engineering Journal, 2019, 362: 251–261

[22]

Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398–3409

[23]

Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140

[24]

Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331

[25]

Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 2015, 28(1): 349–359

[26]

Fan Y, Wei L, Meng X, Zhang W, Yang N, Jin Y, Wang X, Zhao M, Liu S. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569: 117–123

[27]

Feng A, Yu Y, Jiang F, Wang Y, Mi L, Yu Y, Song L. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceramics International, 2017, 43(8): 6322–6328

[28]

Li J, Li X, Van der Bruggen B. MXene-based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304

[29]

Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. Charge- and size-selective ion ieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031

[30]

Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829

[31]

Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155–161

[32]

Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, Qiao Z, Wang H. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742

[33]

Shen J, Liu G, Ji Y, Liu Q, Cheng L, Guan K, Zhang M, Liu G, Xiong J, Yang J, Jin W. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511–1801523

[34]

Zhou F, Tien H N, Dong Q, Xu W L, Li H, Li S, Yu M. Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture. Journal of Membrane Science, 2019, 573: 184–191

[35]

Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 2015, 54(2): 578–582

[36]

Kang Z, Wang S, Fan L, Zhang M, Kang W, Pang J, Du X, Guo H, Wang R, Sun D. In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1(1): 3–10

[37]

Deng Y, Shang T, Wu Z, Tao Y, Luo C, Liang J, Han D, Lyu R, Qi C, Lv W, Kang F, Yang Q H. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Advanced Materials, 2019, 31(43): 1902432–1902438

[38]

Naguib M, Adams R A, Zhao Y, Zemlyanov D, Varma A, Nanda J, Pol V G. Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 2017, 53(51): 6883–6886

[39]

Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8(9): 9606–9615

[40]

Tan X, Li K. Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(4): 838–845

[41]

Wang H, Feldhoff A, Caro J, Schiestel T, Werth S. Oxygen selective ceramic hollow fiber membranes for partial oxidation of methane. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(10): 2657–2664

[42]

Zhu J, Meng X, Zhao J, Jin Y, Yang N, Zhang S, Sunarso J, Liu S. Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers. Journal of Membrane Science, 2017, 535: 143–150

[43]

Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644

[44]

Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81

[45]

Huang L, Li Y, Zhou Q, Yuan W, Shi G. Graphene oxide membranes with tunable semipermeability in organic solvents. Advanced Materials, 2015, 27(25): 3797–3802

[46]

Lukatskaya M R, Mashtalir O, Ren C E, Dall’Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502–1505

[47]

Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J, Barsoum M W, Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681

[48]

Chi C, Wang X, Peng Y, Qian Y, Hu Z, Dong J, Zhao D. Facile preparation of graphene oxide membranes for gas separation. Chemistry of Materials, 2016, 28(9): 2921–2927

[49]

McKoy V, Sinanoğlu O. Theory of dissociation pressures of some gas hydrates. Journal of Chemical Physics, 1963, 38(12): 2946–2956

[50]

Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, Choi J Y, Park H B. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95

[51]

Shamsaei E, Low Z X, Lin X, Mayahi A, Liu H, Zhang X, Zhe Liu J, Wang H. Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. Chemical Communications, 2015, 51(57): 11474–11477

[52]

Li Y, Liang F, Bux H, Yang W, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54

[53]

Jia M, Feng Y, Liu S, Qiu J, Yao J. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. Journal of Membrane Science, 2017, 539: 172–177

[54]

Hong Z, Sun F, Chen D, Zhang C, Gu X, Xu N. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. International Journal of Hydrogen Energy, 2013, 38(20): 8409–8414

[55]

Wang X, Chi C, Tao J, Peng Y, Ying S, Qian Y, Dong J, Hu Z, Gu Y, Zhao D. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chemical Communications, 2016, 52(52): 8087–8090

[56]

Huang A, Liu Q, Wang N, Zhu Y, Caro J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. Journal of the American Chemical Society, 2014, 136(42): 14686–14689

[57]

Elyassi B, Sahimi M, Tsotsis T T. Silicon carbide membranes for gas separation applications. Journal of Membrane Science, 2007, 288(1-2): 290–297

[58]

Xu G, Yao J, Wang K, He L, Webley P A, Chen C, Wang H. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. Journal of Membrane Science, 2011, 385-386: 187–193

[59]

Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586

[60]

Park H J, Suh M P. Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chemical Science (Cambridge), 2013, 4(2): 685–690

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2016KB)

Supplementary files

FCE-20049-OF-FY_suppl_1

9676

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/