Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu

PDF(2016 KB)
PDF(2016 KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 882-891. DOI: 10.1007/s11705-020-1990-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

Author information +
History +

Abstract

Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 108 mol·m2·s1·Pa1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.

Graphical abstract

Keywords

MXene / H2/CO2 separation / nickel ions / hollow fiber

Cite this article

Download citation ▾
Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu. Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Front. Chem. Sci. Eng., 2021, 15(4): 882‒891 https://doi.org/10.1007/s11705-020-1990-1

References

[1]
Liu M, Gurr P A, Fu Q, Webley P A, Qiao G G. Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
CrossRef Google scholar
[2]
Wang J, Zhu J, Zhang Y, Liu J, Van der Bruggen B. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9(9): 2942–2957
CrossRef Google scholar
[3]
Sunarso J, Hashim S S, Lin Y S, Liu S. Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383
CrossRef Google scholar
[4]
Nezhad F A, Han N, Jin Y, Shen Z, Wang Y, Yang N, Liu S. Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not graphene oxides) membranes. Journal of Membrane Science, 2020, 601: 117883
CrossRef Google scholar
[5]
Gin D L, Noble R D. Designing the next generation of chemical separation membranes. Science, 2011, 332(6030): 674–676
CrossRef Google scholar
[6]
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530
CrossRef Google scholar
[7]
Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663
CrossRef Google scholar
[8]
Lau C H, Li P, Li F, Chung T S, Paul D R. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38(5): 740–766
CrossRef Google scholar
[9]
Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn H J, Bao Y, Yu M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98
CrossRef Google scholar
[10]
Battersby S, Tasaki T, Smart S, Ladewig B, Liu S, Duke M C, Rudolph V, Diniz da Costa J C. Performance of cobalt silica membranes in gas mixture separation. Journal of Membrane Science, 2009, 329(1-2): 91–98
CrossRef Google scholar
[11]
Liu Y, Wang N, Cao Z, Caro J. Molecular sieving through interlayer galleries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1235–1238
CrossRef Google scholar
[12]
Wang X, Chi C, Zhang K, Qian Y, Gupta K M, Kang Z, Jiang J, Zhao D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8(1): 14460–14469
CrossRef Google scholar
[13]
Jeong H K, Nair S, Vogt T, Dickinson L C, Tsapatsis M. A highly crystalline layered silicate with three-dimensionally microporous layers. Nature Materials, 2003, 2(1): 53–58
CrossRef Google scholar
[14]
Tsapatsis M. 2-Dimensional zeolites. AIChE Journal, 2014, 60(7): 2374–2381
CrossRef Google scholar
[15]
Agrawal K V, Topuz B, Pham T C, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-Nanosheet seed layers. Advanced Materials, 2015, 27(21): 3243–3249
CrossRef Google scholar
[16]
Venna S R, Lartey M, Li T, Spore A, Kumar S, Nulwala H B, Luebke D R, Rosi N L, Albenze E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(9): 5014–5022
CrossRef Google scholar
[17]
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
CrossRef Google scholar
[18]
Zhao Z, Ma X, Kasik A, Li Z, Lin Y S. Gas separation properties of metal organic framework (MOF-5) membranes. Industrial & Engineering Chemistry Research, 2012, 52(3): 1102–1108
[19]
Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
[20]
Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50(86): 13089–13092
CrossRef Google scholar
[21]
Kang J, Zhang H, Duan X, Sun H, Tan X, Liu S, Wang S. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. Chemical Engineering Journal, 2019, 362: 251–261
CrossRef Google scholar
[22]
Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398–3409
CrossRef Google scholar
[23]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140
CrossRef Google scholar
[24]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331
CrossRef Google scholar
[25]
Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 2015, 28(1): 349–359
CrossRef Google scholar
[26]
Fan Y, Wei L, Meng X, Zhang W, Yang N, Jin Y, Wang X, Zhao M, Liu S. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569: 117–123
CrossRef Google scholar
[27]
Feng A, Yu Y, Jiang F, Wang Y, Mi L, Yu Y, Song L. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceramics International, 2017, 43(8): 6322–6328
CrossRef Google scholar
[28]
Li J, Li X, Van der Bruggen B. MXene-based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304
CrossRef Google scholar
[29]
Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. Charge- and size-selective ion ieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031
CrossRef Google scholar
[30]
Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
CrossRef Google scholar
[31]
Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155–161
CrossRef Google scholar
[32]
Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, Qiao Z, Wang H. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
CrossRef Google scholar
[33]
Shen J, Liu G, Ji Y, Liu Q, Cheng L, Guan K, Zhang M, Liu G, Xiong J, Yang J, Jin W. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511–1801523
CrossRef Google scholar
[34]
Zhou F, Tien H N, Dong Q, Xu W L, Li H, Li S, Yu M. Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture. Journal of Membrane Science, 2019, 573: 184–191
CrossRef Google scholar
[35]
Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 2015, 54(2): 578–582
[36]
Kang Z, Wang S, Fan L, Zhang M, Kang W, Pang J, Du X, Guo H, Wang R, Sun D. In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1(1): 3–10
CrossRef Google scholar
[37]
Deng Y, Shang T, Wu Z, Tao Y, Luo C, Liang J, Han D, Lyu R, Qi C, Lv W, Kang F, Yang Q H. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Advanced Materials, 2019, 31(43): 1902432–1902438
CrossRef Google scholar
[38]
Naguib M, Adams R A, Zhao Y, Zemlyanov D, Varma A, Nanda J, Pol V G. Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 2017, 53(51): 6883–6886
CrossRef Google scholar
[39]
Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8(9): 9606–9615
CrossRef Google scholar
[40]
Tan X, Li K. Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(4): 838–845
CrossRef Google scholar
[41]
Wang H, Feldhoff A, Caro J, Schiestel T, Werth S. Oxygen selective ceramic hollow fiber membranes for partial oxidation of methane. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(10): 2657–2664
CrossRef Google scholar
[42]
Zhu J, Meng X, Zhao J, Jin Y, Yang N, Zhang S, Sunarso J, Liu S. Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers. Journal of Membrane Science, 2017, 535: 143–150
CrossRef Google scholar
[43]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
CrossRef Google scholar
[44]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81
CrossRef Google scholar
[45]
Huang L, Li Y, Zhou Q, Yuan W, Shi G. Graphene oxide membranes with tunable semipermeability in organic solvents. Advanced Materials, 2015, 27(25): 3797–3802
CrossRef Google scholar
[46]
Lukatskaya M R, Mashtalir O, Ren C E, Dall’Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502–1505
CrossRef Google scholar
[47]
Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J, Barsoum M W, Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681
CrossRef Google scholar
[48]
Chi C, Wang X, Peng Y, Qian Y, Hu Z, Dong J, Zhao D. Facile preparation of graphene oxide membranes for gas separation. Chemistry of Materials, 2016, 28(9): 2921–2927
CrossRef Google scholar
[49]
McKoy V, Sinanoğlu O. Theory of dissociation pressures of some gas hydrates. Journal of Chemical Physics, 1963, 38(12): 2946–2956
CrossRef Google scholar
[50]
Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, Choi J Y, Park H B. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
CrossRef Google scholar
[51]
Shamsaei E, Low Z X, Lin X, Mayahi A, Liu H, Zhang X, Zhe Liu J, Wang H. Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. Chemical Communications, 2015, 51(57): 11474–11477
CrossRef Google scholar
[52]
Li Y, Liang F, Bux H, Yang W, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54
CrossRef Google scholar
[53]
Jia M, Feng Y, Liu S, Qiu J, Yao J. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. Journal of Membrane Science, 2017, 539: 172–177
CrossRef Google scholar
[54]
Hong Z, Sun F, Chen D, Zhang C, Gu X, Xu N. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. International Journal of Hydrogen Energy, 2013, 38(20): 8409–8414
CrossRef Google scholar
[55]
Wang X, Chi C, Tao J, Peng Y, Ying S, Qian Y, Dong J, Hu Z, Gu Y, Zhao D. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chemical Communications, 2016, 52(52): 8087–8090
CrossRef Google scholar
[56]
Huang A, Liu Q, Wang N, Zhu Y, Caro J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. Journal of the American Chemical Society, 2014, 136(42): 14686–14689
CrossRef Google scholar
[57]
Elyassi B, Sahimi M, Tsotsis T T. Silicon carbide membranes for gas separation applications. Journal of Membrane Science, 2007, 288(1-2): 290–297
CrossRef Google scholar
[58]
Xu G, Yao J, Wang K, He L, Webley P A, Chen C, Wang H. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. Journal of Membrane Science, 2011, 385-386: 187–193
CrossRef Google scholar
[59]
Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586
CrossRef Google scholar
[60]
Park H J, Suh M P. Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chemical Science (Cambridge), 2013, 4(2): 685–690
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21776165, 21878179 and 21978157). Naitao Yang gratefully thanks the support via Natural Science Foundation of Shandong Province (ZR2019MB056). Shaomin Liu acknowledges the financial support provided by the Australian Research Council (DP180103861).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-020-1990-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2016 KB)

Accesses

Citations

Detail

Sections
Recommended

/