Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation
Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu
Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation
Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10−8 mol·m−2·s−1·Pa−1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.
MXene / H2/CO2 separation / nickel ions / hollow fiber
[1] |
Liu M, Gurr P A, Fu Q, Webley P A, Qiao G G. Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
CrossRef
Google scholar
|
[2] |
Wang J, Zhu J, Zhang Y, Liu J, Van der Bruggen B. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9(9): 2942–2957
CrossRef
Google scholar
|
[3] |
Sunarso J, Hashim S S, Lin Y S, Liu S. Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383
CrossRef
Google scholar
|
[4] |
Nezhad F A, Han N, Jin Y, Shen Z, Wang Y, Yang N, Liu S. Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not graphene oxides) membranes. Journal of Membrane Science, 2020, 601: 117883
CrossRef
Google scholar
|
[5] |
Gin D L, Noble R D. Designing the next generation of chemical separation membranes. Science, 2011, 332(6030): 674–676
CrossRef
Google scholar
|
[6] |
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530
CrossRef
Google scholar
|
[7] |
Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663
CrossRef
Google scholar
|
[8] |
Lau C H, Li P, Li F, Chung T S, Paul D R. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38(5): 740–766
CrossRef
Google scholar
|
[9] |
Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn H J, Bao Y, Yu M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98
CrossRef
Google scholar
|
[10] |
Battersby S, Tasaki T, Smart S, Ladewig B, Liu S, Duke M C, Rudolph V, Diniz da Costa J C. Performance of cobalt silica membranes in gas mixture separation. Journal of Membrane Science, 2009, 329(1-2): 91–98
CrossRef
Google scholar
|
[11] |
Liu Y, Wang N, Cao Z, Caro J. Molecular sieving through interlayer galleries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1235–1238
CrossRef
Google scholar
|
[12] |
Wang X, Chi C, Zhang K, Qian Y, Gupta K M, Kang Z, Jiang J, Zhao D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8(1): 14460–14469
CrossRef
Google scholar
|
[13] |
Jeong H K, Nair S, Vogt T, Dickinson L C, Tsapatsis M. A highly crystalline layered silicate with three-dimensionally microporous layers. Nature Materials, 2003, 2(1): 53–58
CrossRef
Google scholar
|
[14] |
Tsapatsis M. 2-Dimensional zeolites. AIChE Journal, 2014, 60(7): 2374–2381
CrossRef
Google scholar
|
[15] |
Agrawal K V, Topuz B, Pham T C, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-Nanosheet seed layers. Advanced Materials, 2015, 27(21): 3243–3249
CrossRef
Google scholar
|
[16] |
Venna S R, Lartey M, Li T, Spore A, Kumar S, Nulwala H B, Luebke D R, Rosi N L, Albenze E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(9): 5014–5022
CrossRef
Google scholar
|
[17] |
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
CrossRef
Google scholar
|
[18] |
Zhao Z, Ma X, Kasik A, Li Z, Lin Y S. Gas separation properties of metal organic framework (MOF-5) membranes. Industrial & Engineering Chemistry Research, 2012, 52(3): 1102–1108
|
[19] |
Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
|
[20] |
Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50(86): 13089–13092
CrossRef
Google scholar
|
[21] |
Kang J, Zhang H, Duan X, Sun H, Tan X, Liu S, Wang S. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. Chemical Engineering Journal, 2019, 362: 251–261
CrossRef
Google scholar
|
[22] |
Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398–3409
CrossRef
Google scholar
|
[23] |
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140
CrossRef
Google scholar
|
[24] |
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331
CrossRef
Google scholar
|
[25] |
Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 2015, 28(1): 349–359
CrossRef
Google scholar
|
[26] |
Fan Y, Wei L, Meng X, Zhang W, Yang N, Jin Y, Wang X, Zhao M, Liu S. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569: 117–123
CrossRef
Google scholar
|
[27] |
Feng A, Yu Y, Jiang F, Wang Y, Mi L, Yu Y, Song L. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceramics International, 2017, 43(8): 6322–6328
CrossRef
Google scholar
|
[28] |
Li J, Li X, Van der Bruggen B. MXene-based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304
CrossRef
Google scholar
|
[29] |
Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. Charge- and size-selective ion ieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031
CrossRef
Google scholar
|
[30] |
Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
CrossRef
Google scholar
|
[31] |
Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155–161
CrossRef
Google scholar
|
[32] |
Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, Qiao Z, Wang H. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
CrossRef
Google scholar
|
[33] |
Shen J, Liu G, Ji Y, Liu Q, Cheng L, Guan K, Zhang M, Liu G, Xiong J, Yang J, Jin W. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511–1801523
CrossRef
Google scholar
|
[34] |
Zhou F, Tien H N, Dong Q, Xu W L, Li H, Li S, Yu M. Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture. Journal of Membrane Science, 2019, 573: 184–191
CrossRef
Google scholar
|
[35] |
Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 2015, 54(2): 578–582
|
[36] |
Kang Z, Wang S, Fan L, Zhang M, Kang W, Pang J, Du X, Guo H, Wang R, Sun D. In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1(1): 3–10
CrossRef
Google scholar
|
[37] |
Deng Y, Shang T, Wu Z, Tao Y, Luo C, Liang J, Han D, Lyu R, Qi C, Lv W, Kang F, Yang Q H. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Advanced Materials, 2019, 31(43): 1902432–1902438
CrossRef
Google scholar
|
[38] |
Naguib M, Adams R A, Zhao Y, Zemlyanov D, Varma A, Nanda J, Pol V G. Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 2017, 53(51): 6883–6886
CrossRef
Google scholar
|
[39] |
Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8(9): 9606–9615
CrossRef
Google scholar
|
[40] |
Tan X, Li K. Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(4): 838–845
CrossRef
Google scholar
|
[41] |
Wang H, Feldhoff A, Caro J, Schiestel T, Werth S. Oxygen selective ceramic hollow fiber membranes for partial oxidation of methane. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(10): 2657–2664
CrossRef
Google scholar
|
[42] |
Zhu J, Meng X, Zhao J, Jin Y, Yang N, Zhang S, Sunarso J, Liu S. Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers. Journal of Membrane Science, 2017, 535: 143–150
CrossRef
Google scholar
|
[43] |
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
CrossRef
Google scholar
|
[44] |
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81
CrossRef
Google scholar
|
[45] |
Huang L, Li Y, Zhou Q, Yuan W, Shi G. Graphene oxide membranes with tunable semipermeability in organic solvents. Advanced Materials, 2015, 27(25): 3797–3802
CrossRef
Google scholar
|
[46] |
Lukatskaya M R, Mashtalir O, Ren C E, Dall’Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502–1505
CrossRef
Google scholar
|
[47] |
Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J, Barsoum M W, Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681
CrossRef
Google scholar
|
[48] |
Chi C, Wang X, Peng Y, Qian Y, Hu Z, Dong J, Zhao D. Facile preparation of graphene oxide membranes for gas separation. Chemistry of Materials, 2016, 28(9): 2921–2927
CrossRef
Google scholar
|
[49] |
McKoy V, Sinanoğlu O. Theory of dissociation pressures of some gas hydrates. Journal of Chemical Physics, 1963, 38(12): 2946–2956
CrossRef
Google scholar
|
[50] |
Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, Choi J Y, Park H B. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
CrossRef
Google scholar
|
[51] |
Shamsaei E, Low Z X, Lin X, Mayahi A, Liu H, Zhang X, Zhe Liu J, Wang H. Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. Chemical Communications, 2015, 51(57): 11474–11477
CrossRef
Google scholar
|
[52] |
Li Y, Liang F, Bux H, Yang W, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54
CrossRef
Google scholar
|
[53] |
Jia M, Feng Y, Liu S, Qiu J, Yao J. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. Journal of Membrane Science, 2017, 539: 172–177
CrossRef
Google scholar
|
[54] |
Hong Z, Sun F, Chen D, Zhang C, Gu X, Xu N. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. International Journal of Hydrogen Energy, 2013, 38(20): 8409–8414
CrossRef
Google scholar
|
[55] |
Wang X, Chi C, Tao J, Peng Y, Ying S, Qian Y, Dong J, Hu Z, Gu Y, Zhao D. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chemical Communications, 2016, 52(52): 8087–8090
CrossRef
Google scholar
|
[56] |
Huang A, Liu Q, Wang N, Zhu Y, Caro J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. Journal of the American Chemical Society, 2014, 136(42): 14686–14689
CrossRef
Google scholar
|
[57] |
Elyassi B, Sahimi M, Tsotsis T T. Silicon carbide membranes for gas separation applications. Journal of Membrane Science, 2007, 288(1-2): 290–297
CrossRef
Google scholar
|
[58] |
Xu G, Yao J, Wang K, He L, Webley P A, Chen C, Wang H. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. Journal of Membrane Science, 2011, 385-386: 187–193
CrossRef
Google scholar
|
[59] |
Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586
CrossRef
Google scholar
|
[60] |
Park H J, Suh M P. Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chemical Science (Cambridge), 2013, 4(2): 685–690
CrossRef
Google scholar
|
/
〈 | 〉 |