Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G

Wenlong Zhang , Xuyang Zhao , Lin Zhang , Jinwei Zhu , Shanshan Li , Ping Hu , Jiangtao Feng , Wei Yan

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1147 -1157.

PDF (1630KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1147 -1157. DOI: 10.1007/s11705-020-1978-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G

Author information +
History +
PDF (1630KB)

Abstract

In this study, TiO2 functionalized with organic groups were prepared to study the effect of carboxyl and amino groups on the adsorption behavior of TiO2 for the removal of acid red G (ARG) as an anionic dye from aqueous solution. TiO2 was successfully modified with carboxyl and amino groups by using the hydrolysis method with oxalic acid (OAD, with two carboxyl groups), ethylenediamine (EDA, with two amino groups) and DL-alanine (DLA, with one carboxyl group and one amino group) at low temperature (65 °C) and labeled as OAD-TiO2, EDA-TiO2 and DLA-TiO2, respectively. The ARG uptake by the functionalized TiO2 samples was largely dependent on the functional groups. The interaction between ARG and the functional organic groups on the TiO2 samples plays an important role in the adsorption process, which leads to the excellent adsorption performance (higher capacity and faster adsorption rate) of the functionalized TiO2 samples than that of P25 (commercial TiO2 without modification). Furthermore, there is no obvious loss of the adsorption capacity for the functionalized TiO2 even after 5 adsorption-desorption cycles, which indicated the good reusability of the modified TiO2 samples for anionic dye removal from aqueous solution.

Graphical abstract

Keywords

amino group / carboxylic group / titanium dioxide / ARG / adsorption

Cite this article

Download citation ▾
Wenlong Zhang, Xuyang Zhao, Lin Zhang, Jinwei Zhu, Shanshan Li, Ping Hu, Jiangtao Feng, Wei Yan. Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G. Front. Chem. Sci. Eng., 2021, 15(5): 1147-1157 DOI:10.1007/s11705-020-1978-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park H, Kim H I, Moon G H, Choi W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy & Environmental Science, 2016, 9(2): 411–433

[2]

Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3): 169–189

[3]

Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986

[4]

Xu H, Ouyang S, Liu L, Reunchan P, Umezawa N, Ye J. Recent advances in TiO2-based photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12642–12661

[5]

Prieto Rodriguez L, Miralles Cuevas S, Oller I, Aguera A, Li Puma G, Malato S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 2012, 211: 131–137

[6]

Marinho B A, Cristóvão R O, Djellabi R, Loureiro J M, Boaventura R A, Vilar V J P. Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Applied Catalysis B: Environmental, 2017, 203: 18–30

[7]

Choi Y, Koo M S, Bokare A D, Kim D H, Bahnemann D W, Choi W. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/TiO2. Environmental Science & Technology, 2017, 51(7): 3973–3981

[8]

Xiong L, Sun W, Yang Y, Chen C, Ni J. Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption. Journal of Colloid and Interface Science, 2011, 356(1): 211–216

[9]

Nguyen-Phan T D, Song M B, Shin E W. Removal efficiency of gaseous benzene using lanthanide-doped mesoporous titania. Journal of Hazardous Materials, 2009, 167(1-3): 75–81

[10]

Zhang L, Cole J M, Dai C. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups. ACS Applied Materials & Interfaces, 2014, 6(10): 7535–7546

[11]

Kim B, Park S W, Kim J Y, Yoo K, Lee J A, Lee M W, Lee D K, Kim J Y, Kim B, Kim H, Han S, Son H J, Ko M J. Rapid dye adsorption via surface modification of TiO2 photoanodes for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(11): 5201–5207

[12]

Natarajan T S, Bajaj H C, Tayade R J. Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. Journal of Colloid and Interface Science, 2014, 433: 104–114

[13]

Sugita T, Kobayashi K I, Kobayashi K, Yamazaki T, Fujii K, Itabashi H, Mori M. Enhanced aqueous adsorption and photodecomposition of anionic organic target by amino group-modified TiO2 as anionic adsorptive photocatalyst. Journal of Photochemistry and Photobiology A Chemistry, 2018, 356: 71–80

[14]

Baig M I, Ingole P G, Choi W K, Park S R, Kang E C, Lee H K. Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. Journal of Membrane Science, 2016, 514: 622–635

[15]

Nguyen-Le M T, Lee B K. High temperature synthesis of interfacial functionalized carboxylate mesoporous TiO2 for effective adsorption of cationic dyes. Chemical Engineering Journal, 2015, 281: 20–33

[16]

Liu J M, Han L, An N, Xing L, Ma H Y, Cheng L, Yang J C, Zhang Q C. Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Applied Catalysis B: Environmental, 2017, 202: 642–652

[17]

Wang J, Yang G, Chen J, Liu Y, Wang Y, Lao C Y, Xi K, Yang D, Harris C J, Yan W, Ding S, Kumar R V. Flexible and High-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes. Advanced Energy Materials, 2019, 9(38): 1902001

[18]

Weng Y, Li L, Liu Y, Wang L, Yang G. Surface-binding forms of carboxylic groups on nanoparticulate TiO2 surface studied by the interface-sensitive transient triplet-state molecular probe. Journal of Physical Chemistry B, 2003, 107(18): 4356–4363

[19]

Karapati S, Giannakopoulou T, Todorova N, Boukos N, Dimotikali D, Trapalis C. Eco-efficient TiO2 modification for air pollutants oxidation. Applied Catalysis B: Environmental, 2015, 176-177: 578–585

[20]

Mallakpour S, Nikkhoo E. Surface modification of nano-TiO2 with trimellitylimido-amino acid-based diacids for preventing aggregation of nanoparticles. Advanced Powder Technology, 2014, 25(1): 348–353

[21]

Shi B, Zhao C, Ji Y, Shi J, Yang H. Promotion effect of PANI on Fe-PANI/zeolite as an active and recyclable Fenton-like catalyst under near-neutral condition. Applied Surface Science, 2020, 508: 145298

[22]

Li X, Wang D, Cheng G, Luo Q, An J, Wang Y. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Applied Catalysis B: Environmental, 2008, 81(3-4): 267–273

[23]

Janković I A, Šaponjić Z V, Čomor M I, Nedeljković J M. Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives. Journal of Physical Chemistry C, 2009, 113(29): 12645–12652

[24]

Duckworth O W, Martin S T. Surface complexation and dissolution of hematite by C1–C6 dicarboxylic acids at pH= 5.0. Geochimica et Cosmochimica Acta, 2001, 65(23): 4289–4301

[25]

Filius J D, Hiemstra T, Van Riemsdijk W H. Adsorption of small weak organic acids on goethite: modeling of mechanisms. Journal of Colloid and Interface Science, 1997, 195(2): 368–380

[26]

Crake A, Christoforidis K C, Godin R, Moss B, Kafizas A, Zafeiratos S, Durrant J R, Petit C. Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation. Applied Catalysis B: Environmental, 2019, 242: 369–378

[27]

Feng J, Zhu J, Lv W, Li J, Yan W. Effect of hydroxyl group of carboxylic acids on the adsorption of acid red G and methylene blue on TiO2. Chemical Engineering Journal, 2015, 269: 316–322

[28]

Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002, 14(9): 3808–3816

[29]

Yu J C, Yu J G, Ho W K, Zhang L Z. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chemical Communications, 2001, 19(19): 1942–1943

[30]

Lyu W, Wu J M, Zhang W L, Liu Y P, Yu M T, Zhao Y F, Feng J T, Yan W. Easy separated 3D hierarchical coral-like magnetic polyaniline adsorbent with enhanced performance in adsorption and reduction of Cr(VI) and immobilization of Cr(III). Chemical Engineering Journal, 2019, 363: 107–119

[31]

Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 2004, 42(1): 83–94

[32]

Shayegan Z, Haghighat F, Lee C S, Bahloul A, Huard M. Effect of surface fluorination of P25-TiO2 on adsorption of indoor environment volatile organic compounds. Chemical Engineering Journal, 2018, 346: 578–589

[33]

Li S, Fang L, Ye M, Zhang Y. Enhanced adsorption of norfloxacin on modified TiO2 particles prepared via surface molecular imprinting technique. Desalination and Water Treatment, 2016, 57: 408–418

[34]

Leong S, Li D, Hapgood K, Zhang X W, Wang H T. Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Applied Catalysis B: Environmental, 2016, 198: 224–233

[35]

Wang L, Wang J, Wang Z, He C, Lyu W, Yan W, Yang L. Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chemical Engineering Journal, 2018, 354: 623–632

[36]

Srinivasan A, Viraraghavan T. Decolorization of dye wastewaters by biosorbents: a review. Journal of Environmental Management, 2010, 91(10): 1915–1929

[37]

Zhang W L, Fu R, Wang L, Zhu J W, Feng J T, Yan W. Rapid removal of ammonia nitrogen in low-concentration from wastewater by amorphous sodium titanate nano-particles. Science of the Total Environment, 2019, 668: 815–824

[38]

Suresh Kumar P, Korving L, Keesman K J, van Loosdrecht M, Witkamp G. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 2019, 358: 160–169

[39]

Han X X, Zhu G Q, Ding Y X, Miao Y L, Wang K W, Zhang H J, Wang Y, Liu S B. Selective catalytic synthesis of glycerol monolaurate over silica gel-based sulfonic acid functionalized ionic liquid catalysts. Chemical Engineering Journal, 2019, 359: 733–745

[40]

Han X, Yan W, Hung C T, He Y, Wu P H, Liu L L, Huang S J, Liu S B. Transesterification of soybean oil to biodiesel by tin-based Brønsted-Lewis acidic ionic liquid catalysts. Korean Journal of Chemical Engineering, 2016, 33(7): 2063–2072

[41]

Zhang X, Bai R. Adsorption behavior of humic acid onto polypyrrole-coated nylon 6,6-granules. Journal of Materials Chemistry, 2002, 12(9): 2733–2739

[42]

Li J, Zhang Q, Feng J, Yan W. Synthesis of PPy-modified TiO2 composite in H2SO4 solution and its novel adsorption characteristics for organic dyes. Chemical Engineering Journal, 2013, 225: 766–775

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1630KB)

Supplementary files

FCE-20038-OF-ZW_suppl_1

3245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/