A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation

Luanying He , Yulin Chang , Junhao Zhu , Ying Bi , Wenlin An , Yiyang Dong , Jia-Hui Liu , Shihui Wang

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (2) : 410 -420.

PDF (7249KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (2) : 410 -420. DOI: 10.1007/s11705-020-1950-9
RESEARCH ARTICLE
RESEARCH ARTICLE

A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation

Author information +
History +
PDF (7249KB)

Abstract

Graphene oxide (GO) has been increasingly utilized in the fields of food, biomedicine, environment and other fields because of its benign biocompatible. We encapsulated two kinds of GO with different sizes on yeast cells with the assistance of polyelectrolytes poly (styrene sulfonic acid) sodium salt (PSS) and polyglutamic acid (PGA) (termed as Y@GO). The result does not show a significant difference between the properties of the two types of Y@GO (namely Y@GO1 and Y@GO2). The encapsulation layers are optimized as Yeast/PGA/PSS/PGA/GO/PGA/PSS based on the morphology, dispersity, colony-forming unit, and zeta potential. The encapsulation of GO increases the roughness of the yeast. It is proved that the Y@GO increases the survival time and enhance the activity of yeast cells. The GO shell improves the resistance of yeast cells against pH and salt stresses and extends the storage time of yeast cells.

Graphical abstract

Keywords

GO / yeast / polyelectrolyte / cytoprotection / nanomaterials

Cite this article

Download citation ▾
Luanying He, Yulin Chang, Junhao Zhu, Ying Bi, Wenlin An, Yiyang Dong, Jia-Hui Liu, Shihui Wang. A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation. Front. Chem. Sci. Eng., 2021, 15(2): 410-420 DOI:10.1007/s11705-020-1950-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park J H, Kim K, Lee J, Choi J Y, Hong D, Yang S H, Caruso F, Lee Y, Choi I S. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angewandte Chemie, 2014, 126(46): 12628–12633

[2]

Lin J K, Wang X Y, Tang R K. Regulations of organism by materials: a new understanding of biological inorganic chemistry. Journal of Biological Inorganic Chemistry, 2019, 24(4): 467–481

[3]

Sreeprasad T S, Nguyen P, Alshogeathri A, Hibbeler L, Martinez F, McNeil N, Berry V. Graphene quantum dots interfaced with single bacterial spore for bio-electromechanical devices: a graphene cytobot. Scientific Reports, 2015, 5(1): 9138

[4]

Lee H, Hong D, Choi J Y, Kim J Y, Lee S H, Kim H M, Yang S H, Choi I S. Layer-by-layer-based silica encapsulation of individual yeast with thickness control. Chemistry, an Asian Journal, 2015, 10(1): 129–132

[5]

Wang B, Liu P, Jiang W, Pan H, Xu X, Tang R. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angewandte Chemie, 2008, 120(19): 3616–3620

[6]

Wu Q X, Guan Y X, Yao S J. Sodium cellulose sulfate: a promising biomaterial used for microcarriers’ designing. Frontiers of Chemical Science and Engineering, 2019, 13(1): 46–58

[7]

Benucci I, Cerreti M, Maresca D, Mauriello G, Esti M. Yeast cells in double layer calcium alginate-chitosan microcapsules for sparkling wine production. Food Chemistry, 2019, 300: 1–10

[8]

Soma P K, Williams P D, Lo Y M. Advancements in non-starch polysaccharides researchfor frozen foods and microencapsulation of probiotics. Frontiers of Chemical Engineering in China, 2009, 3(4): 413–426

[9]

Dzamukova M R, Naumenko E A, Lannik N I, Fakhrullin R F. Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomaterials Science, 2013, 1(8): 810–813

[10]

Park J H, Hong D, Lee J, Choi I S. Cell-in-shell hybrids: chemical nanoencapsulation of individual cells. Accounts of Chemical Research, 2016, 49(5): 792–800

[11]

Chen C C, Lin H J, Lu W J, Wu J J, Chew C H, Wong C H, Yang C Y, Lin H T V. Enhanced repeated-batch bioethanol fermentation of red seaweeds hydrolysates using microtube array membrane-encapsulated yeast. Journal of Biobased Materials and Bioenergy, 2020, 14(1): 138–145

[12]

Drachuk I, Shchepelina O, Harbaugh S, Kelley-Loughnane N, Stone M, Tsukruk V V. Cell surface engineering with edible protein nanoshells. Small, 2013, 9(18): 3128–3137

[13]

Konnova S A, Sharipova I R, Demina T A, Osin Y N, Yarullina D R, Ilinskaya O N, Lvov Y M, Fakhrullin R F. Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chemical Communications, 2013, 49(39): 4208–4210

[14]

Lee J, Yang S H, Hong S P, Hong D, Lee H, Lee H Y, Kim Y G, Choi I S. Chemical control of yeast cell division by cross-linked shells of catechol-grafted polyelectrolyte multilayers. Macromolecular Rapid Communications, 2013, 34(17): 1351–1356

[15]

Kim B J, Park T, Park S Y, Han S W, Lee H S, Kim Y G, Choi I S. Control of microbial growth in alginate/polydopamine core/shell microbeads. Chemistry, an Asian Journal, 2015, 10(10): 2130–2133

[16]

Rabea E I, Badawy E T, Stevens C V, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003, 4(6): 1457–1465

[17]

Drachuk I, Gupta M K, Tsukruk V V. Biomimetic coatings to control cellular function through cell surface engineering. Advanced Functional Materials, 2013, 23(36): 4437–4453

[18]

Konnova S A, Lvov Y M, Fakhrullin R F. Magnetic halloysite nanotubes for yeast cell surface engineering. Clay Minerals, 2018, 51(3): 429–433

[19]

Kiran S K, Shukla S, Struck A, Saxena S. Surface engineering of graphene oxide shells using lamellar LDH nanostructures. ACS Applied Materials & Interfaces, 2019, 11(22): 20232–20240

[20]

Dong Y, Chang Y, Gao H, León Anchustegui V A, Yu Q, Wang H, Liu J H, Wang S. Characteristic synergistic cytotoxic effects toward cells in graphene oxide dressing with cadmium and copper ions. Toxicology Research, 2019, 8(6): 908–917

[21]

Gao H, Liu J H, Anchustegui V A L, Chang Y, Zhang J, Dong Y. The protective effects of graphene oxide against the stress from organic solvent by covering Hela cells. Current Nanoscience, 2019, 15(4): 412–419

[22]

Fakhrullin R F, Zamaleeva A I, Morozov M V, Tazetdinova D I, Alimova F K, Hilmutdinov A K, Zhdanov R I, Kahraman M, Culha M. Living fungi cells encapsulated in polyelectrolyte shells doped with metal nanoparticles. Langmuir, 2009, 25(8): 4628–4634

[23]

Doonan C, Ricco R, Liang K, Bradshaw D, Falcaro P. Metal-organic frameworks at the biointerface: synthetic strategies and applications. Accounts of Chemical Research, 2017, 50(6): 1423–1432

[24]

Rezaei A, Fathi M, Jafari S M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 2019, 88: 146–162

[25]

Schlesinger O, Alfonta L. Encapsulation of microorganisms, enzymes, and redox mediators in graphene oxide and reduced graphene oxide. Methods in Enzymology, 2018, 609: 197–219

[26]

Smart S K, Cassady A I, Lu G Q, Martin D J. The biocompatibility of carbon nanotubes. Carbon, 2006, 44(6): 1034–1047

[27]

Wahid M H, Eroglu E, LaVars S M, Newton K, Gibson C T, Stroeher U H, Chen X J, Boulos R A, Raston C L, Harmer S L. Microencapsulation of bacterial strains in graphene oxide nano-sheets using vortex fluidics. RSC Advances, 2015, 5(47): 37424–37430

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7249KB)

2157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/