Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale
Xiangchun Liu , Jun Hu , Ruilun Xie , Bin Fang , Ping Cui
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (2) : 363 -372.
Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale
A mixture of Pingdingshan lean coal and acid-treated Huadian oil shale was co-pyrolyzed in a drop-tube fixed-bed reactor in the temperature range of 300 °C–450 °C. To reveal the formation mechanism of the solid co-pyrolysis product, changes in some physicochemical properties were investigated, using analysis by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, pore analysis, thermogravimetry, and electron spin resonance. X-ray diffraction showed that the lattice plane spacing for the co-pyrolyzed mixture decreased from 0.357 nm to 0.346 nm and the average stacking height increased from 1.509 nm to 1.980 nm in the temperature range of 300 °C–450 °C, suggesting that pyrolysis treatment increased its degree of metamorphism. The amount of oxygen-containing functional groups and pore volume decreased with increasing temperature. Thermogravimetry and electron spin resonance results showed that synergistic effects occurred during the co-pyrolysis process. A formation mechanism for the solid product was proposed. Hydrogen-rich radicals generated from the pyrolysis of the oil shale were trapped by hydrogen-poor macromolecular radicals of the intermediate metaplast produced from coal pyrolysis, thereby increasing the yield of solid product.
co-pyrolysis / coal / oil shale / electron spin resonance / mechanism
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statisticals Press, 2018, 129–145 |
| [8] |
Ministry of Natural Resources of China. 2018 China Mineral Resources. Beijing: Geological Publishing House, 2018, 1–4 |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |