Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts
Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding
Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts
Effects of NaI as an additive on electrodeposition of Al coatings in AlCl3-NaCl-KCl (80-10-10 wt-%) molten salts electrolyte at 150 °C were investigated by means of cyclic voltammetry, chronopotentiometry, scanning electron microscopy and X-ray diffraction (XRD). Results reveal that addition of NaI in the electrolyte intensifies cathodic polarization, inhibits growth of Al deposits and increases number density of charged particles. The electrodeposition of Al coatings in the AlCl3-NaCl-KCl molten salts electrolyte proceeds via three-dimensional instantaneous nucleation which however exhibits irrelevance with NaI. Galvanostatic deposition results indicate that NaI could facilitate the formation of uniform Al deposits. A compact coating consisting of Al deposits with an average particle size of 3 μm was obtained at a current density of 50 mA∙cm−2 in AlCl3-NaCl-KCl molten salts electrolyte with 10 wt-% NaI. XRD analysis confirmed that NaI could contribute to the formation of Al coating with a preferred crystallographic orientation along (220) plane.
NaI / additive / electrodeposition / molten salts / Al coating
[1] |
Aguero A, Gutierrez M, Muelas R. Aluminum solid-solution coating for high-temperature corrosion protection. Oxidation of Metals, 2017, 88(1-2): 145–154
CrossRef
Google scholar
|
[2] |
Dai J J, Li S Y, Zhang H X, Yu H J, Chen C Z, Li Y. Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4V alloy fabricated by laser surface alloying. Surface and Coatings Technology, 2018, 344: 479–488
CrossRef
Google scholar
|
[3] |
Wang Q, Sun Q, Zhang M X, Niu W J, Tang C B, Wang K S, Rui X, Zhai L, Wang L. The influence of cold and detonation thermal spraying processes on the microstructure and properties of Al-based composite coatings on Mg alloy. Surface and Coatings Technology, 2018, 352: 627–633
CrossRef
Google scholar
|
[4] |
Belova I V, Heuskin D, Sondermann E, Ignatzi B, Kargl F, Murch G E, Meyer A. Combined interdiffusion and self-diffusion analysis in Al-Cu liquid diffusion couple. Scripta Materialia, 2018, 143: 40–43
CrossRef
Google scholar
|
[5] |
Cho L, Seo E J, Sulistiyo D H, Jo K R, Kim S W, Oh J K, Cho Y R, De Cooman B C. Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel. Materials Science and Engineering A, 2018, 735: 448–455
CrossRef
Google scholar
|
[6] |
Luo X X, Yao Z J, Zhang P Z, Gu D D. Al2O3 nanoparticles reinforced Fe-Al laser cladding coatings with enhanced mechanical properties. Journal of Alloys and Compounds, 2018, 755: 41–45
CrossRef
Google scholar
|
[7] |
Christoglou Ch, Voudouris N, Angelopoulos G N, Pant M, Dahl W. Deposition of aluminum on magnesium by a CVD process. Surface and Coatings Technology, 2004, 184(2): 149–155
CrossRef
Google scholar
|
[8] |
Meng F P, Peng S, Xu G B, Wang Y, Ge F F, Huang F. Structure of uniform and high-quality Al-doped ZnO films by magnetron sputter deposition at low temperatures. Thin Solid Films, 2018, 665: 109–116
CrossRef
Google scholar
|
[9] |
Gamburg Y D, Zangari G. Theory and Practice of Metal Electrodeposition. Heidelberg: Springer, 2011, 1–2
|
[10] |
Landolt D. Electrodeposition science and technology in the last quarter of the twentieth century. Journal of the Electrochemical Society, 2002, 149(3): S9–S20
CrossRef
Google scholar
|
[11] |
Gu Y K, Liu J, Qu S X, Deng Y D, Han X P, Hu W B, Zhong C. Electrodeposition of alloys and compounds from high-temperature molten salts. Journal of Alloys and Compounds, 2017, 690: 228–238
CrossRef
Google scholar
|
[12] |
Zhao Y G, VanderNoot T J. Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochimica Acta, 1997, 42(1): 3–13
CrossRef
Google scholar
|
[13] |
Liu F, Deng Y D, Han X P, Hu W B, Zhong C. Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds, 2016, 654: 163–170
CrossRef
Google scholar
|
[14] |
Simka W, Puszczyk D, Nawrat G. Electrodeposition of metals from non-aqueous solutions. Electrochimica Acta, 2009, 54(23): 5307–5319
CrossRef
Google scholar
|
[15] |
Zhang J F, Yan C W, Wang F H. Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts. Applied Surface Science, 2009, 255(9): 4926–4932
CrossRef
Google scholar
|
[16] |
Li Y L, Zhao P, Dai Y H, Yao M Q, Gan H B, Hu W C. Electrochemical deposition of Al-Mg alloys on tungsten wires from AlCl3-NaCl-KCl melts. Fusion Engineering and Design, 2016, 103: 8–12
CrossRef
Google scholar
|
[17] |
Li W, Chen Z, Wei C C, Kong W P, Xu B H, Jia X Y, Diao C L, Li S J. The electrochemical formation of Al-Cu alloys in a LiCl-KCl-AlCl3 molten salt. Electrochimica Acta, 2016, 196: 162–168
CrossRef
Google scholar
|
[18] |
Ueda M, Hayashi H, Ohtsuka T. Electrodeposition of Al-Pt alloys using constant potential electrolysis in AlCl3-NaCl-KCl molten salt containing PtCl2. Surface and Coatings Technology, 2011, 205(19): 4401–4403
CrossRef
Google scholar
|
[19] |
Ueda M, Inaba R, Ohtsuka T. Composition and structure of Al-Sn alloys formed by constant potential electrolysis in an AlCl3-NaCl-KCl-SnCl2 molten salt. Electrochimica Acta, 2013, 100: 281–284
CrossRef
Google scholar
|
[20] |
Vukićević N M, Cvetković V S, Jovanović L, Stevanović S, Jovićević J N. Alloy formation by electrodeposition of niobium and aluminium on gold from chloroaluminate melts. International Journal of Electrochemical Science, 2017, 12: 1075–1093
CrossRef
Google scholar
|
[21] |
Ueda M, Teshima T, Matsushima H, Ohtsuka T. Electroplating of Al-Zr alloys in AlCl3-NaCl-KCl molten salts to improve corrosion resistance of Al. Journal of Solid State Electrochemistry, 2015, 19(12): 3485–3489
CrossRef
Google scholar
|
[22] |
Sato K, Matsushima H, Ueda M. Electrodeposition of Al-Ta alloys in NaCl-KCl-AlCl3 molten salt containing TaCl5. Applied Surface Science, 2016, 388: 794–798
CrossRef
Google scholar
|
[23] |
Ebe H, Ueda M, Ohtsuka T. Electrodeposition of Sb, Bi, Te, and their alloys in AlCl3-NaCl-KCl molten salt. Electrochimica Acta, 2007, 53(1): 100–105
CrossRef
Google scholar
|
[24] |
Ueda M, Kigawa H, Ohtsuka T. Co-deposition of Al-Cr-Ni alloys using constant potential and potential pulse techniques in AlCl3-NaCl-KCl molten salt. Electrochimica Acta, 2007, 52(7): 2515–2519
CrossRef
Google scholar
|
[25] |
Jafarian M, Mahjani M G, Gobal F, Danaee I. Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3-NaCl-KCl). Journal of Electroanalytical Chemistry, 2006, 588(2): 190–196
CrossRef
Google scholar
|
[26] |
Moffat T P. Electrodeposition of Al-Cr metallic glass. Journal of the Electrochemical Society, 1994, 141(9): L115–L117
CrossRef
Google scholar
|
[27] |
Ding Z M, Feng Q Y, Shen C B, Gao H. Rule of formation of aluminum electroplating layer on Q235 steel. Journal of Environmental Sciences (China), 2011, 23: S138–S141
CrossRef
Google scholar
|
[28] |
Nayak B, Misra M M. The electrodeposition of aluminium on brass from a molten aluminium chloride-sodium chloride bath. Journal of Applied Electrochemistry, 1977, 7(1): 45–50
CrossRef
Google scholar
|
[29] |
Li Q F, Hjuler H A, Berg R W, Bjerrum N J. Electroless growth of aluminum dendrites in NaCl-AlCl3 melts. Journal of the Electrochemical Society, 1989, 136(10): 2940–2943
CrossRef
Google scholar
|
[30] |
Jiang L, Jin Z, Xu F, Yu Y, Wei G, Ge H, Zhang Z, Cao C. Effect of potential on aluminium early-stage electrodeposition onto NdFeB magnet. Surface Engineering, 2017, 33(5): 375–382
CrossRef
Google scholar
|
[31] |
Fellner P, Chrenková-Paučírová M, Matiašovský K. Electrolytic aluminum plating in molten salt mixtures based on AlCl3. I: Influence of the addition of tetramethylammonium chloride. Surface Technology, 1981, 14(2): 101–108
CrossRef
Google scholar
|
[32] |
Liu L, Lu X M, Cai Y J, Zheng Y, Zhang S J. Influence of additives on the speciation, morphology, and nanocrystallinity of aluminium electrodeposition. Australian Journal of Chemistry, 2012, 65(11): 1523–1528
CrossRef
Google scholar
|
[33] |
Miyake M, Kubo Y, Hirato T. Hull cell tests for evaluating the effects of polyethylene amines as brighteners in the electrodeposition of aluminum from dimethylsulfone-AlCl3 baths. Electrochimica Acta, 2014, 120: 423–428
CrossRef
Google scholar
|
[34] |
Zhang Q Q, Wang Q, Zhang S J, Lu X M. Effect of nicotinamide on electrodeposition of Al from aluminium chloride (AlCl3)-1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquids. Journal of Solid State Electrochemistry, 2014, 18(1): 257–267
CrossRef
Google scholar
|
[35] |
Wang Q, Zhang Q Q, Chen B, Lu X M, Zhang S J. Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives. Journal of the Electrochemical Society, 2015, 162(8): D320–D324
CrossRef
Google scholar
|
[36] |
Howie R C, Macmillan D W. The electrodeposition of aluminium from molten aluminium chloride/sodium chloride. Journal of Applied Electrochemistry, 1972, 2(3): 217–222
CrossRef
Google scholar
|
[37] |
Li Q F, Hjuler H A, Berg R W, Bjerrum N J. Electrochemical deposition and dissolution of aluminum in NaAlCl4 melts influence of MnCl2 and sulfide addition. Journal of the Electrochemical Society, 1990, 137: 2794–2798
CrossRef
Google scholar
|
[38] |
Jafarian M, Mahjani M G, Gobal F, Danaee I. Electrodeposition of aluminum from molten AlCl3-NaCl-KCl mixture. Journal of Applied Electrochemistry, 2006, 36(10): 1169–1173
CrossRef
Google scholar
|
[39] |
Delimarsky Y K, Tumanova N K. A study of the effect of surfactants on electrode processes in molten salts. Electrochimica Acta, 1979, 24(1): 19–24
CrossRef
Google scholar
|
[40] |
Paučírová M, Matiašovský K. Electrolytic aluminium-plating in fused salts based on chlorides. Electrodeposition and Surface Treatment, 1975, 3(2): 121–128
CrossRef
Google scholar
|
[41] |
Bakkar A, Neubert V. Electrodeposition and corrosion characterisation of micro- and nano-crystalline aluminum from AlCl3/1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochimica Acta, 2013, 103: 211–218
CrossRef
Google scholar
|
[42] |
Li M, Gao B L, Chen W T, Liu C Y, Wang Z W, Shi Z N, Hu X W. Electrodeposition behavior of aluminum from urea-acetamide-lithium halide low-temperature molten salts. Electrochimica Acta, 2013, 185: 148–155
CrossRef
Google scholar
|
[43] |
Li M, Gao B L, Shi Z N, Hua X W, Wang S X, Li L X, Wang Z W, Yu J Y. Electrochemical study of nickel from urea-acetamide-LiBr low-temperature molten salt. Electrochimica Acta, 2015, 169: 82–89
CrossRef
Google scholar
|
[44] |
Abbott A, Barron J C, Frisch G, Ryder K, Silva A F S. The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 2011, 56(14): 5272–5279
CrossRef
Google scholar
|
[45] |
Tsuda T, Nohira T, Ito Y. Nucleation and surface morphology of aluminum-lanthanum alloy electrodeposited in a LaCl3-saturatedAlCl3-EtMeImCl room temperature molten salt. Electrochimica Acta, 2002, 47(17): 2817–2822
CrossRef
Google scholar
|
[46] |
Liao Q, Pitner W R, Stewart G, Hussey C, Stafford G R. Electrodeposition of aluminum from the aluminum chloride-1-methyl-3-ethyl imidazolium chloride room temperature molten salt+ benzene. Journal of the Electrochemical Society, 1997, 144(3): 936–943
CrossRef
Google scholar
|
/
〈 | 〉 |