Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots

Yonghyun Kim , Huiwen Liu , Yi Liu , Boa Jin , Hao Zhang , Wenjing Tian , Chan Im

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (1) : 187 -197.

PDF (3222KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (1) : 187 -197. DOI: 10.1007/s11705-020-1931-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots

Author information +
History +
PDF (3222KB)

Abstract

Cesium lead halide perovskite (CsPbX3, X= Cl, Br, I) quantum dots (QDs) and their partly Mn2+-substituted QDs (CsPb1–xMnxX3) attract considerable attention owing to their unique photoluminescence (PL) efficiencies. The two types of QDs, having different PL decay dynamics, needed to be further investigated in a form of aggregates to understand their solid-state-induced exciton dynamics in conjunction with their behaviors upon degradation to achieve practical applications of those promising QDs. However, thus far, these QDs have not been sufficiently investigated to obtain deep insights related to the long-term stability of their PL properties as aggregated solid-states. Therefore, in this study, we comparatively examined CsPbX3- and CsPb1–xMnxX3-type QDs stocked for>50 d under dark ambient conditions by using excitation wavelength-dependent PL quantum yield and time-resolved PL spectroscopy. These investigations were performed with powder samples in addition to solutions to determine the influence of the inter-QD interaction of the aged QD aggregates on their radiative decays. It turns out that the Mn2+-substituted QDs exhibited long-lasting PL quantum efficiencies, while the unsubstituted CsPbX3-type QDs exhibited a drastic reduction of their PL efficiencies. And the obtained PL traces were clearly sensitive to the sample status. This is discussed with the possible interaction depending on the size and distance of the QD aggregates.

Graphical abstract

Keywords

quantum dots / cesium lead halide perovskite / time-resolved photoluminescence / PL quantum yield / QD aggregates

Cite this article

Download citation ▾
Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im. Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots. Front. Chem. Sci. Eng., 2021, 15(1): 187-197 DOI:10.1007/s11705-020-1931-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237

[2]

Saliba M, Matsui T, Seo J Y, Domanski K, Correa J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science, 2016, 9(6): 1989–1997

[3]

Chen W, Bao X, Zhu Q, Zhu D, Qiu M, Sun M, Yang R. Simple planar perovskite solar cells with a dopant-free benzodithiophene conjugated polymer as hole transporting material. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(39): 10070–10073

[4]

Pan J, Quan L N, Zhao Y, Peng W, Murali B, Sarmah S P, Yuan M, Sinatra L, Alyami N M, Liu J, Highly efficient perovskite-QD LEDs by surface engineering. Advanced Materials, 2016, 28: 8718–8725

[5]

Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Bright LEDs based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692

[6]

Yoon H C, Kang H, Lee S, Oh J H, Yang H, Do Y R. Study of perovskite quantum dot down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Applied Materials & Interfaces, 2016, 8(28): 18189–18200

[7]

Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angewandte Chemie International Edition, 2015, 54(51): 15424–15428

[8]

Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angewandte Chemie International Edition, 2016, 55(44): 13887–13892

[9]

Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells. Journal of Physical Chemistry Letters, 2015, 6(13): 2452–2456

[10]

Chen J, Liu D, Al-Marri M J, Nuuttila L, Lehtivuori H, Zheng K. Photo-stability of CsPbBr3 perovskite Quantum Dots for optoelectronic application. Science China Materials, 2016, 59(9): 719–727

[11]

Akkerman Q A, Motti S G, Srimath Kandada A R, Mosconi E, D’Innocenzo V, Bertoni G, Marras S, Kamino B A, Miranda L, de Angelis F D, Petrozza A, Prato M, Manna L. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. Journal of the American Chemical Society, 2016, 138(3): 1010–1016

[12]

Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society, 2015, 137(32): 10276–10281

[13]

Li X, Cao F, Yu D, Chen J, Sun Z, Shen Y, Zhu Y, Wang L, Wei Y, Wu Y, Zeng H. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small, 2017, 13(9): 1603996

[14]

Chen W, Xin X, Zang Z, Tang X, Li C, Hu W, Zhou M, Du J. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application. Journal of Solid State Chemistry, 2017, 255: 115–120

[15]

Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S. Perovskite quantum dots and their application in LEDs. Small, 2018, 14(1): 1702433

[16]

Song P, Qiao B, Song D, Liang Z, Gao D, Cao J, Shen Z, Xu Z, Zhao S. Colour- and structure-stable CsPbBr3-CsPb2Br5 compounded Quantum Dots with tuneable blue and green light emission. Journal of Alloys and Compounds, 2018, 767: 98–105

[17]

Zhang X, Wang W, Xu B, Liu S, Dai H, Bian D, Chen S, Wang K, Sun X W. Thin film perovskite LED based on CsPbBr3 powders and interfacial engineering. Nano Energy, 2017, 37: 40–45

[18]

Li J, Dong H, Xu B, Zhang S, Cai Z, Wang J, Zhang L. CsPbBr3 perovskite Quantum Dots: Saturable absorption properties and passively Q-switched visible lasers. Photonics Research, 2017, 5(5): 457–460

[19]

Chen L C, Lee K L, Huang C Y, Lin J C, Tseng Z L. Preparation and characteristics of MAPbBr3 perovskite quantum dots on NiOx film and application for high transparent solar cells. Micromachines, 2018, 9(5): 205

[20]

Liu D, Hu Z, Hu W, Wangyang P, Yu K, Wen M, Zu Z, Liu J, Wang M, Chen W, Zhou M, Tang X, Zang Z. Two-step method for preparing all-inorganic CsPbBr3 perovskite film and its photoelectric detection application. Materials Letters, 2017, 186: 243–246

[21]

Sheng X, Liu Y, Wang Y, Li Y, Wang X, Wang X, Dai Z, Bao J, Xu X. Cesium lead halide perovskite quantum dots as a PL probe for metal ions. Advanced Materials, 2017, 29(37): 1700150

[22]

Liu Y, Tang X, Zhu T, Deng M, Ikechukwu I P, Huang W, Yin G, Bai Y, Qu D, Huang X, Qiu F. All-inorganic CsPbBr3 perovskite Quantum Dots as a PL probe for ultrasensitive Cu2+ detection. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(17): 4793–4799

[23]

Liu H, Wu Z, Gao H, Shao J, Zou H, Yao D, Liu Y, Zhang H, Yang B. One-step preparation of cesium lead halide CsPbX3 (X= Cl, Br, and I) perovskite nanocrystals by microwave irradiation. ACS Applied Materials & Interfaces, 2017, 9(49): 42919–42927

[24]

Liu H, Wu Z, Shao J, Yao D, Gao H, Liu Y, Yu W, Zhang H, Yang B. CsPbxMn1–xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano, 2017, 11(2): 2239–2247

[25]

Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, All-inorganic bismuth-based perovskite QDs with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28: 1704446-1–1704446-11

[26]

Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Böhm M L. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9): 2941–2944

[27]

Woo H C, Choi J W, Shin J, Chin S H, Ann M H, Lee C L. Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. Journal of Physical Chemistry Letters, 2018, 9(14): 4066–4074

[28]

Wang Y, Yang Y, Wang P, Bai X. Concentration- and temperature-dependent photoluminescence of CsPbBr3 perovskite QDs. Optik (Stuttgart), 2017, 139: 56–60

[29]

Zhang J, Ma S, Fang H, Xu B, Sun H, Im C, Tian W. Insights into the origin of aggregation enhanced emission of 9,10-distyrylanthracene derivatives. Materials Chemistry Frontiers, 2017, 1(7): 1422–1429

[30]

Im C, Lupton J M, Schouwink P, Heun S, Becker H, Bässler H. Fluorescence dynamics of phenyl-substituted polyphenylenevinylene–trinitrofluorenone blend systems. Journal of Chemical Physics, 2002, 117(3): 1395–1402

[31]

Song J, Lee Y, Jin B, An J, Park H, Park H, Lee M, Im C. Connecting charge transfer kinetics to device parameters of a narrow-bandgap polymer-based solar cell. Physical Chemistry Chemical Physics, 2016, 18(38): 26550–26561

[32]

Hertel D, Romanovskii Y V, Schweitzer B, Scherf U, Bassler H. The origin of the delayed emission in films of a ladder-type poly(para-phenylene). Synthetic Metals, 2001, 116(1-3): 139–143

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3222KB)

Supplementary files

FCE-19079-OF-KY_suppl_1

5594

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/