Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots

Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im

PDF(3222 KB)
PDF(3222 KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (1) : 187-197. DOI: 10.1007/s11705-020-1931-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots

Author information +
History +

Abstract

Cesium lead halide perovskite (CsPbX3, X= Cl, Br, I) quantum dots (QDs) and their partly Mn2+-substituted QDs (CsPb1–xMnxX3) attract considerable attention owing to their unique photoluminescence (PL) efficiencies. The two types of QDs, having different PL decay dynamics, needed to be further investigated in a form of aggregates to understand their solid-state-induced exciton dynamics in conjunction with their behaviors upon degradation to achieve practical applications of those promising QDs. However, thus far, these QDs have not been sufficiently investigated to obtain deep insights related to the long-term stability of their PL properties as aggregated solid-states. Therefore, in this study, we comparatively examined CsPbX3- and CsPb1–xMnxX3-type QDs stocked for>50 d under dark ambient conditions by using excitation wavelength-dependent PL quantum yield and time-resolved PL spectroscopy. These investigations were performed with powder samples in addition to solutions to determine the influence of the inter-QD interaction of the aged QD aggregates on their radiative decays. It turns out that the Mn2+-substituted QDs exhibited long-lasting PL quantum efficiencies, while the unsubstituted CsPbX3-type QDs exhibited a drastic reduction of their PL efficiencies. And the obtained PL traces were clearly sensitive to the sample status. This is discussed with the possible interaction depending on the size and distance of the QD aggregates.

Graphical abstract

Keywords

quantum dots / cesium lead halide perovskite / time-resolved photoluminescence / PL quantum yield / QD aggregates

Cite this article

Download citation ▾
Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im. Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots. Front. Chem. Sci. Eng., 2021, 15(1): 187‒197 https://doi.org/10.1007/s11705-020-1931-z

References

[1]
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237
CrossRef Google scholar
[2]
Saliba M, Matsui T, Seo J Y, Domanski K, Correa J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science, 2016, 9(6): 1989–1997
CrossRef Google scholar
[3]
Chen W, Bao X, Zhu Q, Zhu D, Qiu M, Sun M, Yang R. Simple planar perovskite solar cells with a dopant-free benzodithiophene conjugated polymer as hole transporting material. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(39): 10070–10073
CrossRef Google scholar
[4]
Pan J, Quan L N, Zhao Y, Peng W, Murali B, Sarmah S P, Yuan M, Sinatra L, Alyami N M, Liu J, Highly efficient perovskite-QD LEDs by surface engineering. Advanced Materials, 2016, 28: 8718–8725
CrossRef Google scholar
[5]
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Bright LEDs based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
CrossRef Google scholar
[6]
Yoon H C, Kang H, Lee S, Oh J H, Yang H, Do Y R. Study of perovskite quantum dot down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Applied Materials & Interfaces, 2016, 8(28): 18189–18200
CrossRef Google scholar
[7]
Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angewandte Chemie International Edition, 2015, 54(51): 15424–15428
CrossRef Google scholar
[8]
Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angewandte Chemie International Edition, 2016, 55(44): 13887–13892
CrossRef Google scholar
[9]
Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells. Journal of Physical Chemistry Letters, 2015, 6(13): 2452–2456
CrossRef Google scholar
[10]
Chen J, Liu D, Al-Marri M J, Nuuttila L, Lehtivuori H, Zheng K. Photo-stability of CsPbBr3 perovskite Quantum Dots for optoelectronic application. Science China Materials, 2016, 59(9): 719–727
CrossRef Google scholar
[11]
Akkerman Q A, Motti S G, Srimath Kandada A R, Mosconi E, D’Innocenzo V, Bertoni G, Marras S, Kamino B A, Miranda L, de Angelis F D, Petrozza A, Prato M, Manna L. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. Journal of the American Chemical Society, 2016, 138(3): 1010–1016
CrossRef Google scholar
[12]
Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society, 2015, 137(32): 10276–10281
CrossRef Google scholar
[13]
Li X, Cao F, Yu D, Chen J, Sun Z, Shen Y, Zhu Y, Wang L, Wei Y, Wu Y, Zeng H. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small, 2017, 13(9): 1603996
CrossRef Google scholar
[14]
Chen W, Xin X, Zang Z, Tang X, Li C, Hu W, Zhou M, Du J. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application. Journal of Solid State Chemistry, 2017, 255: 115–120
CrossRef Google scholar
[15]
Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S. Perovskite quantum dots and their application in LEDs. Small, 2018, 14(1): 1702433
CrossRef Google scholar
[16]
Song P, Qiao B, Song D, Liang Z, Gao D, Cao J, Shen Z, Xu Z, Zhao S. Colour- and structure-stable CsPbBr3-CsPb2Br5 compounded Quantum Dots with tuneable blue and green light emission. Journal of Alloys and Compounds, 2018, 767: 98–105
CrossRef Google scholar
[17]
Zhang X, Wang W, Xu B, Liu S, Dai H, Bian D, Chen S, Wang K, Sun X W. Thin film perovskite LED based on CsPbBr3 powders and interfacial engineering. Nano Energy, 2017, 37: 40–45
CrossRef Google scholar
[18]
Li J, Dong H, Xu B, Zhang S, Cai Z, Wang J, Zhang L. CsPbBr3 perovskite Quantum Dots: Saturable absorption properties and passively Q-switched visible lasers. Photonics Research, 2017, 5(5): 457–460
CrossRef Google scholar
[19]
Chen L C, Lee K L, Huang C Y, Lin J C, Tseng Z L. Preparation and characteristics of MAPbBr3 perovskite quantum dots on NiOx film and application for high transparent solar cells. Micromachines, 2018, 9(5): 205
CrossRef Google scholar
[20]
Liu D, Hu Z, Hu W, Wangyang P, Yu K, Wen M, Zu Z, Liu J, Wang M, Chen W, Zhou M, Tang X, Zang Z. Two-step method for preparing all-inorganic CsPbBr3 perovskite film and its photoelectric detection application. Materials Letters, 2017, 186: 243–246
CrossRef Google scholar
[21]
Sheng X, Liu Y, Wang Y, Li Y, Wang X, Wang X, Dai Z, Bao J, Xu X. Cesium lead halide perovskite quantum dots as a PL probe for metal ions. Advanced Materials, 2017, 29(37): 1700150
CrossRef Google scholar
[22]
Liu Y, Tang X, Zhu T, Deng M, Ikechukwu I P, Huang W, Yin G, Bai Y, Qu D, Huang X, Qiu F. All-inorganic CsPbBr3 perovskite Quantum Dots as a PL probe for ultrasensitive Cu2+ detection. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(17): 4793–4799
CrossRef Google scholar
[23]
Liu H, Wu Z, Gao H, Shao J, Zou H, Yao D, Liu Y, Zhang H, Yang B. One-step preparation of cesium lead halide CsPbX3 (X= Cl, Br, and I) perovskite nanocrystals by microwave irradiation. ACS Applied Materials & Interfaces, 2017, 9(49): 42919–42927
CrossRef Google scholar
[24]
Liu H, Wu Z, Shao J, Yao D, Gao H, Liu Y, Yu W, Zhang H, Yang B. CsPbxMn1–xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano, 2017, 11(2): 2239–2247
CrossRef Google scholar
[25]
Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, All-inorganic bismuth-based perovskite QDs with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28: 1704446-1–1704446-11
[26]
Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Böhm M L. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9): 2941–2944
CrossRef Google scholar
[27]
Woo H C, Choi J W, Shin J, Chin S H, Ann M H, Lee C L. Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. Journal of Physical Chemistry Letters, 2018, 9(14): 4066–4074
CrossRef Google scholar
[28]
Wang Y, Yang Y, Wang P, Bai X. Concentration- and temperature-dependent photoluminescence of CsPbBr3 perovskite QDs. Optik (Stuttgart), 2017, 139: 56–60
CrossRef Google scholar
[29]
Zhang J, Ma S, Fang H, Xu B, Sun H, Im C, Tian W. Insights into the origin of aggregation enhanced emission of 9,10-distyrylanthracene derivatives. Materials Chemistry Frontiers, 2017, 1(7): 1422–1429
CrossRef Google scholar
[30]
Im C, Lupton J M, Schouwink P, Heun S, Becker H, Bässler H. Fluorescence dynamics of phenyl-substituted polyphenylenevinylene–trinitrofluorenone blend systems. Journal of Chemical Physics, 2002, 117(3): 1395–1402
CrossRef Google scholar
[31]
Song J, Lee Y, Jin B, An J, Park H, Park H, Lee M, Im C. Connecting charge transfer kinetics to device parameters of a narrow-bandgap polymer-based solar cell. Physical Chemistry Chemical Physics, 2016, 18(38): 26550–26561
CrossRef Google scholar
[32]
Hertel D, Romanovskii Y V, Schweitzer B, Scherf U, Bassler H. The origin of the delayed emission in films of a ladder-type poly(para-phenylene). Synthetic Metals, 2001, 116(1-3): 139–143
CrossRef Google scholar

Acknowledgements

This work was supported by the research program of Konkuk University in 2018.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-020-1931-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(3222 KB)

Accesses

Citations

Detail

Sections
Recommended

/