Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review
Simin Feng, Xiaoli Zhang, Dunyun Shi, Zheng Wang
Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review
Zeolitic imidazolate framework-8 (ZIF-8), composed of Zn ions and imidazolate ligands, is a class of metal-organic frameworks, which possesses a similar structure as conventional aluminosilicate zeolites. This material exhibits inherent porous property, high loading capacity, and pH-sensitive degradation, as well as exceptional thermal and chemical stability. Extensive research effort has been devoted to relevant research aspects ranging from synthesis methods, property characterization to potential applications of ZIF-8. This review focuses on the recent development of ZIF-8 synthesis methods and its promising applications in drug delivery. The potential risks of using ZIF-8 for drug delivery are also summarized.
zeolitic imidazolate framework-8 (ZIF-8) / synthesis methods / applications / drug delivery
[1] |
Cheetham A K, Rao C N, Feller R K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Communications, 2006, (46): 4780–4795
CrossRef
Google scholar
|
[2] |
Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
CrossRef
Google scholar
|
[3] |
Ferey G, Mellot-Draznieks C, Serre C, Millange F. Crystallized frameworks with giant pores: Are there limits to the possible? Accounts of Chemical Research, 2005, 38(4): 217–225
CrossRef
Google scholar
|
[4] |
O’Keeffe M, Peskov M A, Ramsden S J, Yaghi O M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 2008, 41(12): 1782–1789
CrossRef
Google scholar
|
[5] |
Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319(5865): 939–943
CrossRef
Google scholar
|
[6] |
Moggach S A, Bennett T D, Cheetham A K. The effect of pressure on zif-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 gpa. Angewandte Chemie International Edition, 2009, 48(38): 7087–7089
CrossRef
Google scholar
|
[7] |
Fairen-Jimenez D, Moggach S A, Wharmby M T, Wright P A, Parsons S, Duren T. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations. Journal of the American Chemical Society, 2011, 133(23): 8900–8902
CrossRef
Google scholar
|
[8] |
Wang F, Tan Y X, Yang H, Zhang H X, Kang Y, Zhang J. A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chemical Communications, 2011, 47(20): 5828–5830
CrossRef
Google scholar
|
[9] |
Li Y, Liang F, Bux H, Yang W, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54
CrossRef
Google scholar
|
[10] |
Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1-2): 36–40
CrossRef
Google scholar
|
[11] |
McCarthy M C, Varela-Guerrero V, Barnett G V, Jeong H K. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641
CrossRef
Google scholar
|
[12] |
Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. Journal of the American Chemical Society, 2009, 131(32): 11302–11303
CrossRef
Google scholar
|
[13] |
Chizallet C, Lazare S, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud A A, Bats N. Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. Journal of the American Chemical Society, 2010, 132(35): 12365–12377
CrossRef
Google scholar
|
[14] |
Wu H, Zhou W, Yildirim T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2007, 129(17): 5314–5315
CrossRef
Google scholar
|
[15] |
Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314
CrossRef
Google scholar
|
[16] |
Ma S, Zhou H C. Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 2010, 46(1): 44–53
CrossRef
Google scholar
|
[17] |
Harbuzaru B V, Corma A, Rey F, Jorda J L, Ananias D, Carlos L D, Rocha J. A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angewandte Chemie International Edition, 2009, 48(35): 6476–6479
CrossRef
Google scholar
|
[18] |
Lu G, Hupp J T. Metal-organic frameworks as sensors: A ZIF-8 based fabry-perot device as a selective sensor for chemical vapors and gases. Journal of the American Chemical Society, 2010, 132(23): 7832–7833
CrossRef
Google scholar
|
[19] |
Lu D, An Y, Feng S, Li X, Fan A, Wang Z, Zhao Y. Imidazole-bearing polymeric micelles for enhanced cellular uptake, rapid endosomal escape, and on-demand cargo release. AAPS PharmSciTech, 2018, 19(6): 2610–2619
CrossRef
Google scholar
|
[20] |
Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, Wang Z, Shi Y, Kiessling F, Lammers T, Cheng J, Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Journal of Controlled Release, 2017, 260: 12–21
CrossRef
Google scholar
|
[21] |
Li J, Meng X, Deng J, Lu D, Zhang X, Chen Y, Zhu J, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Multifunctional micelles dually responsive to hypoxia and singlet oxygen: Enhanced photodynamic therapy via interactively triggered photosensitizer delivery. ACS Applied Materials & Interfaces, 2018, 10(20): 17117–17128
CrossRef
Google scholar
|
[22] |
Meng X, Deng J, Liu F, Guo T, Liu M, Dai P, Fan A, Wang Z, Zhao Y. Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Letters, 2019, 19(11): 7866–7876
CrossRef
Google scholar
|
[23] |
Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191
CrossRef
Google scholar
|
[24] |
Rohani S, Isimjan T, Mohamed A, Kazemian H, Salem M, Wang T. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles. Frontiers of Chemical Science and Engineering, 2011, 6(1): 112–122
CrossRef
Google scholar
|
[25] |
Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794
CrossRef
Google scholar
|
[26] |
Huang X C, Lin Y Y, Zhang J P, Chen X M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559
CrossRef
Google scholar
|
[27] |
Zhang J P, Zhu A X, Lin R B, Qi X L, Chen X M. Pore surface tailored sod-type metal-organic zeolites. Advanced Materials, 2011, 23(10): 1268–1271
CrossRef
Google scholar
|
[28] |
Zhu A X, Lin R B, Qi X L, Liu Y, Lin Y Y, Zhang J P, Chen X M. Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous and Mesoporous Materials, 2012, 157: 42–49
CrossRef
Google scholar
|
[29] |
Cravillon J, Münzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials, 2009, 21(8): 1410–1412
CrossRef
Google scholar
|
[30] |
Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 2011, 23(8): 2130–2141
CrossRef
Google scholar
|
[31] |
Cravillon J, Schröder C A, Bux H, Rothkirch A, Caro J, Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 2012, 14(2): 492–498
CrossRef
Google scholar
|
[32] |
Nune S K, Thallapally P K, Dohnalkova A, Wang C, Liu J, Exarhos G J. Synthesis and properties of nano zeolitic imidazolate frameworks. Chemical Communications, 2010, 46(27): 4878–4880
CrossRef
Google scholar
|
[33] |
Bennett T D, Saines P J, Keen D A, Tan J C, Cheetham A K. Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(22): 7049–7055
CrossRef
Google scholar
|
[34] |
He M, Yao J, Li L, Wang K, Chen F, Wang H. Synthesis of zeolitic imidazolate framework-7 in a water/ethanol mixture and its ethanol-induced reversible phase transition. ChemPlusChem, 2013, 78(10): 1222–1225
CrossRef
Google scholar
|
[35] |
Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B. Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359(6372): 206–210
CrossRef
Google scholar
|
[36] |
Hu L, Yan Z, Zhang J, Peng X, Mo X, Wang A, Chen L. Surfactant aggregates within deep eutectic solvent-assisted synthesis of hierarchical ZIF-8 with tunable porosity and enhanced catalytic activity. Journal of Materials Science, 2019, 54(16): 11009–11023
CrossRef
Google scholar
|
[37] |
Chen Y, Tang S. Solvothermal synthesis of porous hydrangea-like zeolitic imidazole framework-8 (ZIF-8) crystals. Journal of Solid State Chemistry, 2019, 276: 68–74
CrossRef
Google scholar
|
[38] |
Troyano J, Carne-Sanchez A, Avci C, Imaz I, Maspoch D. Colloidal metal-organic framework particles: The pioneering case of ZIF-8. Chemical Society Reviews, 2019, 48(23): 5534–5546
CrossRef
Google scholar
|
[39] |
Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011, 47(7): 2071–2073
CrossRef
Google scholar
|
[40] |
Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters, 2012, 41(10): 1337–1339
CrossRef
Google scholar
|
[41] |
Gross A F, Sherman E, Vajo J J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Transactions (Cambridge, England), 2012, 41(18): 5458–5460
CrossRef
Google scholar
|
[42] |
Yao J, He M, Wang K, Chen R, Zhong Z, Wang H. High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm, 2013, 15(18): 3601
CrossRef
Google scholar
|
[43] |
He M, Yao J, Liu Q, Wang K, Chen F, Wang H. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 2014, 184: 55–60
CrossRef
Google scholar
|
[44] |
Seoane B, Zamaro J M, Tellez C, Coronas J. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). CrystEngComm, 2012, 14(9): 3103
CrossRef
Google scholar
|
[45] |
Cho H Y, Kim J, Kim S N, Ahn W S. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, 2013, 169: 180–184
CrossRef
Google scholar
|
[46] |
Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot. Journal of the American Chemical Society, 1986, 108(18): 5641–5642
CrossRef
Google scholar
|
[47] |
Son W J, Kim J, Kim J, Ahn W S. Sonochemical synthesis of MOF-5. Chemical Communications, 2008, (47): 6336–6338
CrossRef
Google scholar
|
[48] |
Schlesinger M, Schulze S, Hietschold M, Mehring M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and. Microporous and Mesoporous Materials, 2010, 132(1-2): 121–127
CrossRef
Google scholar
|
[49] |
Fernández-Bertrán J F, Hernández M P, Reguera E, Yee-Madeira H, Rodriguez J, Paneque A, Llopiz J C. Characterization of mechanochemically synthesized imidazolates of Ag+1, Zn+2, Cd+2, and Hg+2: Solid state reactivity of nd10 cations. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1612–1617
CrossRef
Google scholar
|
[50] |
Adams C J, Colquhoun H M, Crawford P C, Lusi M, Orpen A G. Solid-state interconversions of coordination networks and hydrogen-bonded salts. Angewandte Chemie International Edition, 2007, 119(7): 1142–1146
CrossRef
Google scholar
|
[51] |
Beldon P J, Fabian L, Stein R S, Thirumurugan A, Cheetham A K, Friscic T. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angewandte Chemie International Edition, 2010, 49(50): 9640–9643
CrossRef
Google scholar
|
[52] |
Braga D, Curzi M, Johansson A, Polito M, Rubini K, Grepioni F. Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules. Angewandte Chemie International Edition, 2006, 45(1): 142–146
CrossRef
Google scholar
|
[53] |
Friscic T, Reid D G, Halasz I, Stein R S, Dinnebier R E, Duer M J. Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angewandte Chemie International Edition, 2010, 49(4): 712–715
CrossRef
Google scholar
|
[54] |
Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chemical Communications, 2013, 49(72): 7884–7886
CrossRef
Google scholar
|
[55] |
Cao S, Bennett T D, Keen D A, Goodwin A L, Cheetham A K. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chemical Communications, 2012, 48(63): 7805–7807
CrossRef
Google scholar
|
[56] |
Lewis D W, Ruiz-Salvador A R, Gómez A, Rodriguez-Albelo L M, Coudert F X, Slater B, Cheetham A K, Mellot-Draznieks C. Zeolitic imidazole frameworks: Structural and energetics trends compared with their zeolite analogues. CrystEngComm, 2009, 11(11): 2272
CrossRef
Google scholar
|
[57] |
Tan J C, Cheetham A K. Mechanical properties of hybrid inorganic-organic framework materials: Establishing fundamental structure-property relationships. Chemical Society Reviews, 2011, 40(2): 1059–1080
CrossRef
Google scholar
|
[58] |
Tan J C, Bennett T D, Cheetham A K. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 9938–9943
CrossRef
Google scholar
|
[59] |
Cliffe M J, Mottillo C, Stein R S, Bučar D K, Friščić T. Accelerated aging: A low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials. Chemical Science (Cambridge), 2012, 3(8): 2495
CrossRef
Google scholar
|
[60] |
Mottillo C, Lu Y, Pham M H, Cliffe M J, Do T O, Friščić T. Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal-organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 2013, 15(8): 2121
CrossRef
Google scholar
|
[61] |
Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450–1459
CrossRef
Google scholar
|
[62] |
Xiao D J, Bloch E D, Mason J A, Queen W L, Hudson M R, Planas N, Borycz J, Dzubak A L, Verma P, Lee K, Bonino F, Crocellà V, Yano J, Bordiga S, Truhlar D G, Gagliardi L, Brown C M, Long J R. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Nature Chemistry, 2014, 6(7): 590–595
CrossRef
Google scholar
|
[63] |
Nguyen L T L, Le K K A, Truong H X, Phan N T S. Metal-organic frameworks for catalysis: The knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science & Technology, 2012, 2(3): 521–528
CrossRef
Google scholar
|
[64] |
Tran U P N, Le K K A, Phan N T S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catalysis, 2011, 1(2): 120–127
CrossRef
Google scholar
|
[65] |
Hu Y, Zheng S, Zhang F. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541
CrossRef
Google scholar
|
[66] |
Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948
CrossRef
Google scholar
|
[67] |
Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300(5622): 1127–1129
CrossRef
Google scholar
|
[68] |
Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker J E, Tang C C, Allan D R, Rizkallah P J, Hubberstey P, Champness N R, Mark Thomas K, Blake A J, Schröder M. A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nature Materials, 2012, 11(8): 710–716
CrossRef
Google scholar
|
[69] |
Al-Janabi N, Alfutimie A, Siperstein F R, Fan X. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107
CrossRef
Google scholar
|
[70] |
Wang Y, Li C, Meng F, Lv S, Guo J, Liu X, Wang C, Ma Z. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Frontiers of Chemical Science and Engineering, 2014, 8(3): 340–345
CrossRef
Google scholar
|
[71] |
Ma W, Jiang Q, Yu P, Yang L, Mao L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Analytical Chemistry, 2013, 85(15): 7550–7557
CrossRef
Google scholar
|
[72] |
Liu S, Xiang Z, Hu Z, Zheng X, Cao D. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. Journal of Materials Chemistry, 2011, 21(18): 6649
CrossRef
Google scholar
|
[73] |
Liu S, Wang L, Tian J, Luo Y, Chang G, Asiri A M, Al-Youbi A O, Sun X. Application of zeolitic imidazolate framework-8 nanoparticles for the fluorescence-enhanced detection of nucleic acids. ChemPlusChem, 2012, 77(1): 23–26
CrossRef
Google scholar
|
[74] |
Ojha R P, Lemieux P A, Dixon P K, Liu A J, Durian D J. Statistical mechanics of a gas-fluidized particle. Nature, 2004, 427(6974): 521–523
CrossRef
Google scholar
|
[75] |
Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042
CrossRef
Google scholar
|
[76] |
Eddaoudi M, Moler D B, Li H, Chen B, Reineke T M, O’Keeffe M, Yaghi O M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research, 2001, 34(4): 319–330
CrossRef
Google scholar
|
[77] |
Chen B, Xiang S, Qian G. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts of Chemical Research, 2010, 43(8): 1115–1124
CrossRef
Google scholar
|
[78] |
Sun C Y, Qin C, Wang X L, Yang G S, Shao K Z, Lan Y Q, Su Z M, Huang P, Wang C G, Wang E B. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions (Cambridge, England), 2012, 41(23): 6906–6909
CrossRef
Google scholar
|
[79] |
Lu G, Li S, Guo Z, Farha O K, Hauser B G, Qi X, Wang Y, Wang X, Han S, Liu X,
CrossRef
Google scholar
|
[80] |
Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2010, 132(51): 18030–18033
CrossRef
Google scholar
|
[81] |
Broadley M R, White P J, Hammond J P, Zelko I, Lux A. Zinc in plants. New Phytologist, 2007, 173(4): 677–702
CrossRef
Google scholar
|
[82] |
Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nystrom A M, Zou X. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. Journal of the American Chemical Society, 2016, 138(3): 962–968
CrossRef
Google scholar
|
[83] |
Wang H, Li T, Li J, Tong W, Gao C. One-pot synthesis of poly(ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: Size control, surface modification and drug encapsulation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 568: 224–230
CrossRef
Google scholar
|
[84] |
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 2010, 9(2): 172–178
CrossRef
Google scholar
|
[85] |
Soomro N A, Wu Q, Amur S A, Liang H, Ur Rahman A, Yuan Q, Wei Y. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent. Colloids and Surfaces. B, Biointerfaces, 2019, 182: 110364
CrossRef
Google scholar
|
[86] |
Almeida P V, Shahbazi M A, Makila E, Kaasalainen M, Salonen J, Hirvonen J, Santos H A. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6(17): 10377–10387
CrossRef
Google scholar
|
[87] |
Abednejad A, Ghaee A, Nourmohammadi J, Mehrizi A A. Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties. Carbohydrate Polymers, 2019, 222: 115033
CrossRef
Google scholar
|
[88] |
Shu F, Lv D, Song X L, Huang B, Wang C, Yu Y, Zhao S C. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Advances, 2018, 8(12): 6581–6589
CrossRef
Google scholar
|
[89] |
Liedana N, Galve A, Rubio C, Tellez C, Coronas J. CAF@ZIF-8: One-step encapsulation of caffeine in MOF. ACS Applied Materials & Interfaces, 2012, 4(9): 5016–5021
CrossRef
Google scholar
|
[90] |
de Matas M, Edwards H G M, Lawson E E, Shields L, York P. Ft-Raman spectroscopic investigation of a pseudopolymorphic transition in caffeine hydrate. Journal of Molecular Structure, 1998, 440(1-3): 97–104
CrossRef
Google scholar
|
[91] |
Chu C, Lin H, Liu H, Wang X, Wang J, Zhang P, Gao H, Huang C, Zeng Y, Tan Y, Liu G, Chen X. Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Advanced Materials, 2017, 29(23): 1605928
CrossRef
Google scholar
|
[92] |
Robinson J T, Welsher K, Tabakman S M, Sherlock S P, Wang H, Luong R, Dai H. High performance in vivo near-IR (>1 mm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, 3(11): 779–793
CrossRef
Google scholar
|
[93] |
Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728
CrossRef
Google scholar
|
[94] |
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
CrossRef
Google scholar
|
[95] |
Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 2012, 41(6): 2256–2282
CrossRef
Google scholar
|
[96] |
Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 2011, 40(3): 1647–1671
CrossRef
Google scholar
|
[97] |
Ren X, Chen H, Yang V, Sun D. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Frontiers of Chemical Science and Engineering, 2014, 8(3): 253–264
CrossRef
Google scholar
|
[98] |
Zhang S, Sun C, Zeng J, Sun Q, Wang G, Wang Y, Wu Y, Dou S, Gao M, Li Z. Ambient aqueous synthesis of ultrasmall PEGylated Cu2–x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Advanced Materials, 2016, 28(40): 8927–8936
CrossRef
Google scholar
|
[99] |
Wang Y, Wu Y, Liu Y, Shen J, Lv L, Li L, Yang L, Zeng J, Wang Y, Zhang L W,
CrossRef
Google scholar
|
[100] |
Gao F, Sun M, Xu L, Liu L, Kuang H, Xu C. Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent. Advanced Functional Materials, 2017, 27(24): 1700605
CrossRef
Google scholar
|
[101] |
Song S, Shen H, Yang T, Wang L, Fu H, Chen H, Zhang Z. Indocyanine green loaded magnetic carbon nanoparticles for near infrared fluorescence/magnetic resonance dual-modal imaging and photothermal therapy of tumor. ACS Applied Materials & Interfaces, 2017, 9(11): 9484–9495
CrossRef
Google scholar
|
[102] |
Zhou B, Li Y, Niu G, Lan M, Jia Q, Liang Q. Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer. ACS Applied Materials & Interfaces, 2016, 8(44): 29899–29905
CrossRef
Google scholar
|
[103] |
Li Y, Xu N, Zhou J, Zhu W, Li L, Dong M, Yu H, Wang L, Liu W, Xie Z. Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomaterials Science, 2018, 6(11): 2918–2924
CrossRef
Google scholar
|
[104] |
Li Y, Xu N, Zhu W, Wang L, Liu B, Zhang J, Xie Z, Liu W. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS Applied Materials & Interfaces, 2018, 10(27): 22974–22984
CrossRef
Google scholar
|
[105] |
Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, Sheng Z, Ma Y, Cai L. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials, 2012, 33(22): 5603–5609
CrossRef
Google scholar
|
[106] |
Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L. Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3): 2056–2067
CrossRef
Google scholar
|
[107] |
Mordon S, Devoisselle J M, Soulie-Begu S, Desmettre T. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo. Microvascular Research, 1998, 55(2): 146–152
CrossRef
Google scholar
|
[108] |
Wang T, Li S, Zou Z, Hai L, Yang X, Jia X, Zhang A, He D, He X, Wang K. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(23): 3914–3921
CrossRef
Google scholar
|
[109] |
Juzeniene A, Peng Q, Moan J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochemical & Photobiological Sciences, 2007, 6(12): 1234–1245
CrossRef
Google scholar
|
[110] |
Lu D, Tao R, Wang Z. Carbon-based materials for photodynamic therapy: A mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323
CrossRef
Google scholar
|
[111] |
Juarranz Á, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clinical & Translational Oncology, 2008, 10(3): 148–154
CrossRef
Google scholar
|
[112] |
Henderson B W, Dougherty T J. How does photodynamic therapy work? Photochemistry and Photobiology, 1992, 55(1): 145–157
CrossRef
Google scholar
|
[113] |
Castano A P, Demidova T N, Hamblin M R. Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 279–293
CrossRef
Google scholar
|
[114] |
Xu D, You Y, Zeng F, Wang Y, Liang C, Feng H, Ma X. Disassembly of hydrophobic photosensitizer by biodegradable zeolitic imidazolate framework-8 for photodynamic cancer therapy. ACS Applied Materials & Interfaces, 2018, 10(18): 15517–15523
CrossRef
Google scholar
|
[115] |
Xie Z, Liang S, Cai X, Ding B, Huang S, Hou Z, Ma P, Cheng Z, Lin J. O2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Applied Materials & Interfaces, 2019, 11(35): 31671–31680
CrossRef
Google scholar
|
[116] |
Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angewandte Chemie International Edition, 2016, 55(6): 2101–2106
CrossRef
Google scholar
|
[117] |
Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956
CrossRef
Google scholar
|
[118] |
Lin L S, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, Niu G, Yang H H, Chen X. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906
CrossRef
Google scholar
|
[119] |
Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857
CrossRef
Google scholar
|
[120] |
Chen Y, Deng J, Liu F, Dai P, An Y, Wang Z, Zhao Y. Energy-free, singlet oxygen-based chemodynamic therapy for selective tumor treatment without dark toxicity. Advanced Healthcare Materials, 2019, 8(18): 1900366
CrossRef
Google scholar
|
[121] |
Leader B, Baca Q J, Golan D E. Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 2008, 7(1): 21–39
CrossRef
Google scholar
|
[122] |
Chen Z, Li N, Li S, Dharmarwardana M, Schlimme A, Gassensmith J J. Viral chemistry: The chemical functionalization of viral architectures to create new technology. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2016, 8(4): 512–534
CrossRef
Google scholar
|
[123] |
Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Baglioni P, Buldyrev S V, Chen S H, Stanley H E. Energy landscape in protein folding and unfolding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3159–3163
CrossRef
Google scholar
|
[124] |
Carmichael S P, Shell M S. Entropic (de)stabilization of surface-bound peptides conjugated with polymers. Journal of Chemical Physics, 2015, 143(24): 243103
CrossRef
Google scholar
|
[125] |
Wang C, Luan J, Tadepalli S, Liu K K, Morrissey J J, Kharasch E D, Naik R R, Singamaneni S. Silk-encapsulated plasmonic biochips with enhanced thermal stability. ACS Applied Materials & Interfaces, 2016, 8(40): 26493–26500
CrossRef
Google scholar
|
[126] |
Liang K, Ricco R, Doherty C M, Styles M J, Bell S, Kirby N, Mudie S, Haylock D, Hill A J, Doonan C J, Falcaro P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015, 6(1): 7240
CrossRef
Google scholar
|
[127] |
Alsaiari S K, Patil S, Alyami M, Alamoudi K O, Aleisa F A, Merzaban J S, Li M, Khashab N M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. Journal of the American Chemical Society, 2018, 140(1): 143–146
CrossRef
Google scholar
|
[128] |
Wang J, Ye Y, Yu J, Kahkoska A R, Zhang X, Wang C, Sun W, Corder R D, Chen Z, Khan S A, et al
CrossRef
Google scholar
|
[129] |
Yang J, Cao Z. Glucose-responsive insulin release: Analysis of mechanisms, formulations, and evaluation criteria. Journal of Controlled Release, 2017, 263: 231–239
CrossRef
Google scholar
|
[130] |
Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, Ligler F S, Buse J B, Gu Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8260–8265
CrossRef
Google scholar
|
[131] |
Chen W H, Luo G F, Vazquez-Gonzalez M, Cazelles R, Sohn Y S, Nechushtai R, Mandel Y, Willner I. Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano, 2018, 12(8): 7538–7545
CrossRef
Google scholar
|
[132] |
Weed R I, Reed C F, Berg G. Is hemoglobin an essential structural component of human erythrocyte membranes? Journal of Clinical Investigation, 1963, 42(4): 581–588
CrossRef
Google scholar
|
[133] |
Ranji-Burachaloo H, Reyhani A, Gurr P A, Dunstan D E, Qiao G G. Combined fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale, 2019, 11(12): 5705–5716
CrossRef
Google scholar
|
[134] |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. Rna-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
CrossRef
Google scholar
|
[135] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
CrossRef
Google scholar
|
[136] |
Li M, Tao Y, Shu Y, LaRochelle J R, Steinauer A, Thompson D, Schepartz A, Chen Z Y, Liu D R. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. Journal of the American Chemical Society, 2015, 137(44): 14084–14093
CrossRef
Google scholar
|
/
〈 | 〉 |