Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review

Simin Feng , Xiaoli Zhang , Dunyun Shi , Zheng Wang

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (2) : 221 -237.

PDF (1858KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (2) : 221 -237. DOI: 10.1007/s11705-020-1927-8
REVIEW ARTICLE
REVIEW ARTICLE

Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review

Author information +
History +
PDF (1858KB)

Abstract

Zeolitic imidazolate framework-8 (ZIF-8), composed of Zn ions and imidazolate ligands, is a class of metal-organic frameworks, which possesses a similar structure as conventional aluminosilicate zeolites. This material exhibits inherent porous property, high loading capacity, and pH-sensitive degradation, as well as exceptional thermal and chemical stability. Extensive research effort has been devoted to relevant research aspects ranging from synthesis methods, property characterization to potential applications of ZIF-8. This review focuses on the recent development of ZIF-8 synthesis methods and its promising applications in drug delivery. The potential risks of using ZIF-8 for drug delivery are also summarized.

Graphical abstract

Keywords

zeolitic imidazolate framework-8 (ZIF-8) / synthesis methods / applications / drug delivery

Cite this article

Download citation ▾
Simin Feng, Xiaoli Zhang, Dunyun Shi, Zheng Wang. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review. Front. Chem. Sci. Eng., 2021, 15(2): 221-237 DOI:10.1007/s11705-020-1927-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheetham A K, Rao C N, Feller R K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Communications, 2006, (46): 4780–4795

[2]

Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504

[3]

Ferey G, Mellot-Draznieks C, Serre C, Millange F. Crystallized frameworks with giant pores: Are there limits to the possible? Accounts of Chemical Research, 2005, 38(4): 217–225

[4]

O’Keeffe M, Peskov M A, Ramsden S J, Yaghi O M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 2008, 41(12): 1782–1789

[5]

Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319(5865): 939–943

[6]

Moggach S A, Bennett T D, Cheetham A K. The effect of pressure on zif-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 gpa. Angewandte Chemie International Edition, 2009, 48(38): 7087–7089

[7]

Fairen-Jimenez D, Moggach S A, Wharmby M T, Wright P A, Parsons S, Duren T. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations. Journal of the American Chemical Society, 2011, 133(23): 8900–8902

[8]

Wang F, Tan Y X, Yang H, Zhang H X, Kang Y, Zhang J. A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chemical Communications, 2011, 47(20): 5828–5830

[9]

Li Y, Liang F, Bux H, Yang W, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54

[10]

Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1-2): 36–40

[11]

McCarthy M C, Varela-Guerrero V, Barnett G V, Jeong H K. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641

[12]

Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. Journal of the American Chemical Society, 2009, 131(32): 11302–11303

[13]

Chizallet C, Lazare S, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud A A, Bats N. Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. Journal of the American Chemical Society, 2010, 132(35): 12365–12377

[14]

Wu H, Zhou W, Yildirim T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2007, 129(17): 5314–5315

[15]

Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314

[16]

Ma S, Zhou H C. Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 2010, 46(1): 44–53

[17]

Harbuzaru B V, Corma A, Rey F, Jorda J L, Ananias D, Carlos L D, Rocha J. A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angewandte Chemie International Edition, 2009, 48(35): 6476–6479

[18]

Lu G, Hupp J T. Metal-organic frameworks as sensors: A ZIF-8 based fabry-perot device as a selective sensor for chemical vapors and gases. Journal of the American Chemical Society, 2010, 132(23): 7832–7833

[19]

Lu D, An Y, Feng S, Li X, Fan A, Wang Z, Zhao Y. Imidazole-bearing polymeric micelles for enhanced cellular uptake, rapid endosomal escape, and on-demand cargo release. AAPS PharmSciTech, 2018, 19(6): 2610–2619

[20]

Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, Wang Z, Shi Y, Kiessling F, Lammers T, Cheng J, Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Journal of Controlled Release, 2017, 260: 12–21

[21]

Li J, Meng X, Deng J, Lu D, Zhang X, Chen Y, Zhu J, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Multifunctional micelles dually responsive to hypoxia and singlet oxygen: Enhanced photodynamic therapy via interactively triggered photosensitizer delivery. ACS Applied Materials & Interfaces, 2018, 10(20): 17117–17128

[22]

Meng X, Deng J, Liu F, Guo T, Liu M, Dai P, Fan A, Wang Z, Zhao Y. Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Letters, 2019, 19(11): 7866–7876

[23]

Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191

[24]

Rohani S, Isimjan T, Mohamed A, Kazemian H, Salem M, Wang T. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles. Frontiers of Chemical Science and Engineering, 2011, 6(1): 112–122

[25]

Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794

[26]

Huang X C, Lin Y Y, Zhang J P, Chen X M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559

[27]

Zhang J P, Zhu A X, Lin R B, Qi X L, Chen X M. Pore surface tailored sod-type metal-organic zeolites. Advanced Materials, 2011, 23(10): 1268–1271

[28]

Zhu A X, Lin R B, Qi X L, Liu Y, Lin Y Y, Zhang J P, Chen X M. Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous and Mesoporous Materials, 2012, 157: 42–49

[29]

Cravillon J, Münzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials, 2009, 21(8): 1410–1412

[30]

Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 2011, 23(8): 2130–2141

[31]

Cravillon J, Schröder C A, Bux H, Rothkirch A, Caro J, Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 2012, 14(2): 492–498

[32]

Nune S K, Thallapally P K, Dohnalkova A, Wang C, Liu J, Exarhos G J. Synthesis and properties of nano zeolitic imidazolate frameworks. Chemical Communications, 2010, 46(27): 4878–4880

[33]

Bennett T D, Saines P J, Keen D A, Tan J C, Cheetham A K. Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(22): 7049–7055

[34]

He M, Yao J, Li L, Wang K, Chen F, Wang H. Synthesis of zeolitic imidazolate framework-7 in a water/ethanol mixture and its ethanol-induced reversible phase transition. ChemPlusChem, 2013, 78(10): 1222–1225

[35]

Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B. Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359(6372): 206–210

[36]

Hu L, Yan Z, Zhang J, Peng X, Mo X, Wang A, Chen L. Surfactant aggregates within deep eutectic solvent-assisted synthesis of hierarchical ZIF-8 with tunable porosity and enhanced catalytic activity. Journal of Materials Science, 2019, 54(16): 11009–11023

[37]

Chen Y, Tang S. Solvothermal synthesis of porous hydrangea-like zeolitic imidazole framework-8 (ZIF-8) crystals. Journal of Solid State Chemistry, 2019, 276: 68–74

[38]

Troyano J, Carne-Sanchez A, Avci C, Imaz I, Maspoch D. Colloidal metal-organic framework particles: The pioneering case of ZIF-8. Chemical Society Reviews, 2019, 48(23): 5534–5546

[39]

Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011, 47(7): 2071–2073

[40]

Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters, 2012, 41(10): 1337–1339

[41]

Gross A F, Sherman E, Vajo J J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Transactions (Cambridge, England), 2012, 41(18): 5458–5460

[42]

Yao J, He M, Wang K, Chen R, Zhong Z, Wang H. High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm, 2013, 15(18): 3601

[43]

He M, Yao J, Liu Q, Wang K, Chen F, Wang H. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 2014, 184: 55–60

[44]

Seoane B, Zamaro J M, Tellez C, Coronas J. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). CrystEngComm, 2012, 14(9): 3103

[45]

Cho H Y, Kim J, Kim S N, Ahn W S. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, 2013, 169: 180–184

[46]

Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot. Journal of the American Chemical Society, 1986, 108(18): 5641–5642

[47]

Son W J, Kim J, Kim J, Ahn W S. Sonochemical synthesis of MOF-5. Chemical Communications, 2008, (47): 6336–6338

[48]

Schlesinger M, Schulze S, Hietschold M, Mehring M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and. Microporous and Mesoporous Materials, 2010, 132(1-2): 121–127

[49]

Fernández-Bertrán J F, Hernández M P, Reguera E, Yee-Madeira H, Rodriguez J, Paneque A, Llopiz J C. Characterization of mechanochemically synthesized imidazolates of Ag+1, Zn+2, Cd+2, and Hg+2: Solid state reactivity of nd10 cations. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1612–1617

[50]

Adams C J, Colquhoun H M, Crawford P C, Lusi M, Orpen A G. Solid-state interconversions of coordination networks and hydrogen-bonded salts. Angewandte Chemie International Edition, 2007, 119(7): 1142–1146

[51]

Beldon P J, Fabian L, Stein R S, Thirumurugan A, Cheetham A K, Friscic T. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angewandte Chemie International Edition, 2010, 49(50): 9640–9643

[52]

Braga D, Curzi M, Johansson A, Polito M, Rubini K, Grepioni F. Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules. Angewandte Chemie International Edition, 2006, 45(1): 142–146

[53]

Friscic T, Reid D G, Halasz I, Stein R S, Dinnebier R E, Duer M J. Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angewandte Chemie International Edition, 2010, 49(4): 712–715

[54]

Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chemical Communications, 2013, 49(72): 7884–7886

[55]

Cao S, Bennett T D, Keen D A, Goodwin A L, Cheetham A K. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chemical Communications, 2012, 48(63): 7805–7807

[56]

Lewis D W, Ruiz-Salvador A R, Gómez A, Rodriguez-Albelo L M, Coudert F X, Slater B, Cheetham A K, Mellot-Draznieks C. Zeolitic imidazole frameworks: Structural and energetics trends compared with their zeolite analogues. CrystEngComm, 2009, 11(11): 2272

[57]

Tan J C, Cheetham A K. Mechanical properties of hybrid inorganic-organic framework materials: Establishing fundamental structure-property relationships. Chemical Society Reviews, 2011, 40(2): 1059–1080

[58]

Tan J C, Bennett T D, Cheetham A K. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 9938–9943

[59]

Cliffe M J, Mottillo C, Stein R S, Bučar D K, Friščić T. Accelerated aging: A low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials. Chemical Science (Cambridge), 2012, 3(8): 2495

[60]

Mottillo C, Lu Y, Pham M H, Cliffe M J, Do T O, Friščić T. Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal-organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 2013, 15(8): 2121

[61]

Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450–1459

[62]

Xiao D J, Bloch E D, Mason J A, Queen W L, Hudson M R, Planas N, Borycz J, Dzubak A L, Verma P, Lee K, Bonino F, Crocellà V, Yano J, Bordiga S, Truhlar D G, Gagliardi L, Brown C M, Long J R. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Nature Chemistry, 2014, 6(7): 590–595

[63]

Nguyen L T L, Le K K A, Truong H X, Phan N T S. Metal-organic frameworks for catalysis: The knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science & Technology, 2012, 2(3): 521–528

[64]

Tran U P N, Le K K A, Phan N T S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catalysis, 2011, 1(2): 120–127

[65]

Hu Y, Zheng S, Zhang F. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541

[66]

Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948

[67]

Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300(5622): 1127–1129

[68]

Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker J E, Tang C C, Allan D R, Rizkallah P J, Hubberstey P, Champness N R, Mark Thomas K, Blake A J, Schröder M. A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nature Materials, 2012, 11(8): 710–716

[69]

Al-Janabi N, Alfutimie A, Siperstein F R, Fan X. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107

[70]

Wang Y, Li C, Meng F, Lv S, Guo J, Liu X, Wang C, Ma Z. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Frontiers of Chemical Science and Engineering, 2014, 8(3): 340–345

[71]

Ma W, Jiang Q, Yu P, Yang L, Mao L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Analytical Chemistry, 2013, 85(15): 7550–7557

[72]

Liu S, Xiang Z, Hu Z, Zheng X, Cao D. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. Journal of Materials Chemistry, 2011, 21(18): 6649

[73]

Liu S, Wang L, Tian J, Luo Y, Chang G, Asiri A M, Al-Youbi A O, Sun X. Application of zeolitic imidazolate framework-8 nanoparticles for the fluorescence-enhanced detection of nucleic acids. ChemPlusChem, 2012, 77(1): 23–26

[74]

Ojha R P, Lemieux P A, Dixon P K, Liu A J, Durian D J. Statistical mechanics of a gas-fluidized particle. Nature, 2004, 427(6974): 521–523

[75]

Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042

[76]

Eddaoudi M, Moler D B, Li H, Chen B, Reineke T M, O’Keeffe M, Yaghi O M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research, 2001, 34(4): 319–330

[77]

Chen B, Xiang S, Qian G. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts of Chemical Research, 2010, 43(8): 1115–1124

[78]

Sun C Y, Qin C, Wang X L, Yang G S, Shao K Z, Lan Y Q, Su Z M, Huang P, Wang C G, Wang E B. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions (Cambridge, England), 2012, 41(23): 6906–6909

[79]

Lu G, Li S, Guo Z, Farha O K, Hauser B G, Qi X, Wang Y, Wang X, Han S, Liu X, . Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4(4): 310–316

[80]

Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2010, 132(51): 18030–18033

[81]

Broadley M R, White P J, Hammond J P, Zelko I, Lux A. Zinc in plants. New Phytologist, 2007, 173(4): 677–702

[82]

Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nystrom A M, Zou X. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. Journal of the American Chemical Society, 2016, 138(3): 962–968

[83]

Wang H, Li T, Li J, Tong W, Gao C. One-pot synthesis of poly(ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: Size control, surface modification and drug encapsulation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 568: 224–230

[84]

Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 2010, 9(2): 172–178

[85]

Soomro N A, Wu Q, Amur S A, Liang H, Ur Rahman A, Yuan Q, Wei Y. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent. Colloids and Surfaces. B, Biointerfaces, 2019, 182: 110364

[86]

Almeida P V, Shahbazi M A, Makila E, Kaasalainen M, Salonen J, Hirvonen J, Santos H A. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6(17): 10377–10387

[87]

Abednejad A, Ghaee A, Nourmohammadi J, Mehrizi A A. Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties. Carbohydrate Polymers, 2019, 222: 115033

[88]

Shu F, Lv D, Song X L, Huang B, Wang C, Yu Y, Zhao S C. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Advances, 2018, 8(12): 6581–6589

[89]

Liedana N, Galve A, Rubio C, Tellez C, Coronas J. CAF@ZIF-8: One-step encapsulation of caffeine in MOF. ACS Applied Materials & Interfaces, 2012, 4(9): 5016–5021

[90]

de Matas M, Edwards H G M, Lawson E E, Shields L, York P. Ft-Raman spectroscopic investigation of a pseudopolymorphic transition in caffeine hydrate. Journal of Molecular Structure, 1998, 440(1-3): 97–104

[91]

Chu C, Lin H, Liu H, Wang X, Wang J, Zhang P, Gao H, Huang C, Zeng Y, Tan Y, Liu G, Chen X. Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Advanced Materials, 2017, 29(23): 1605928

[92]

Robinson J T, Welsher K, Tabakman S M, Sherlock S P, Wang H, Luong R, Dai H. High performance in vivo near-IR (>1 mm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, 3(11): 779–793

[93]

Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728

[94]

Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547

[95]

Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 2012, 41(6): 2256–2282

[96]

Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 2011, 40(3): 1647–1671

[97]

Ren X, Chen H, Yang V, Sun D. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Frontiers of Chemical Science and Engineering, 2014, 8(3): 253–264

[98]

Zhang S, Sun C, Zeng J, Sun Q, Wang G, Wang Y, Wu Y, Dou S, Gao M, Li Z. Ambient aqueous synthesis of ultrasmall PEGylated Cu2–x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Advanced Materials, 2016, 28(40): 8927–8936

[99]

Wang Y, Wu Y, Liu Y, Shen J, Lv L, Li L, Yang L, Zeng J, Wang Y, Zhang L W,. BSA-mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Advanced Functional Materials, 2016, 26(29): 5335–5344

[100]

Gao F, Sun M, Xu L, Liu L, Kuang H, Xu C. Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent. Advanced Functional Materials, 2017, 27(24): 1700605

[101]

Song S, Shen H, Yang T, Wang L, Fu H, Chen H, Zhang Z. Indocyanine green loaded magnetic carbon nanoparticles for near infrared fluorescence/magnetic resonance dual-modal imaging and photothermal therapy of tumor. ACS Applied Materials & Interfaces, 2017, 9(11): 9484–9495

[102]

Zhou B, Li Y, Niu G, Lan M, Jia Q, Liang Q. Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer. ACS Applied Materials & Interfaces, 2016, 8(44): 29899–29905

[103]

Li Y, Xu N, Zhou J, Zhu W, Li L, Dong M, Yu H, Wang L, Liu W, Xie Z. Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomaterials Science, 2018, 6(11): 2918–2924

[104]

Li Y, Xu N, Zhu W, Wang L, Liu B, Zhang J, Xie Z, Liu W. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS Applied Materials & Interfaces, 2018, 10(27): 22974–22984

[105]

Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, Sheng Z, Ma Y, Cai L. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials, 2012, 33(22): 5603–5609

[106]

Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L. Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3): 2056–2067

[107]

Mordon S, Devoisselle J M, Soulie-Begu S, Desmettre T. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo. Microvascular Research, 1998, 55(2): 146–152

[108]

Wang T, Li S, Zou Z, Hai L, Yang X, Jia X, Zhang A, He D, He X, Wang K. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(23): 3914–3921

[109]

Juzeniene A, Peng Q, Moan J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochemical & Photobiological Sciences, 2007, 6(12): 1234–1245

[110]

Lu D, Tao R, Wang Z. Carbon-based materials for photodynamic therapy: A mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323

[111]

Juarranz Á, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clinical & Translational Oncology, 2008, 10(3): 148–154

[112]

Henderson B W, Dougherty T J. How does photodynamic therapy work? Photochemistry and Photobiology, 1992, 55(1): 145–157

[113]

Castano A P, Demidova T N, Hamblin M R. Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 279–293

[114]

Xu D, You Y, Zeng F, Wang Y, Liang C, Feng H, Ma X. Disassembly of hydrophobic photosensitizer by biodegradable zeolitic imidazolate framework-8 for photodynamic cancer therapy. ACS Applied Materials & Interfaces, 2018, 10(18): 15517–15523

[115]

Xie Z, Liang S, Cai X, Ding B, Huang S, Hou Z, Ma P, Cheng Z, Lin J. O2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Applied Materials & Interfaces, 2019, 11(35): 31671–31680

[116]

Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angewandte Chemie International Edition, 2016, 55(6): 2101–2106

[117]

Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956

[118]

Lin L S, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, Niu G, Yang H H, Chen X. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906

[119]

Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857

[120]

Chen Y, Deng J, Liu F, Dai P, An Y, Wang Z, Zhao Y. Energy-free, singlet oxygen-based chemodynamic therapy for selective tumor treatment without dark toxicity. Advanced Healthcare Materials, 2019, 8(18): 1900366

[121]

Leader B, Baca Q J, Golan D E. Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 2008, 7(1): 21–39

[122]

Chen Z, Li N, Li S, Dharmarwardana M, Schlimme A, Gassensmith J J. Viral chemistry: The chemical functionalization of viral architectures to create new technology. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2016, 8(4): 512–534

[123]

Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Baglioni P, Buldyrev S V, Chen S H, Stanley H E. Energy landscape in protein folding and unfolding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3159–3163

[124]

Carmichael S P, Shell M S. Entropic (de)stabilization of surface-bound peptides conjugated with polymers. Journal of Chemical Physics, 2015, 143(24): 243103

[125]

Wang C, Luan J, Tadepalli S, Liu K K, Morrissey J J, Kharasch E D, Naik R R, Singamaneni S. Silk-encapsulated plasmonic biochips with enhanced thermal stability. ACS Applied Materials & Interfaces, 2016, 8(40): 26493–26500

[126]

Liang K, Ricco R, Doherty C M, Styles M J, Bell S, Kirby N, Mudie S, Haylock D, Hill A J, Doonan C J, Falcaro P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015, 6(1): 7240

[127]

Alsaiari S K, Patil S, Alyami M, Alamoudi K O, Aleisa F A, Merzaban J S, Li M, Khashab N M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. Journal of the American Chemical Society, 2018, 140(1): 143–146

[128]

Wang J, Ye Y, Yu J, Kahkoska A R, Zhang X, Wang C, Sun W, Corder R D, Chen Z, Khan S A, et al . Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12(3): 2466–2473

[129]

Yang J, Cao Z. Glucose-responsive insulin release: Analysis of mechanisms, formulations, and evaluation criteria. Journal of Controlled Release, 2017, 263: 231–239

[130]

Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, Ligler F S, Buse J B, Gu Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8260–8265

[131]

Chen W H, Luo G F, Vazquez-Gonzalez M, Cazelles R, Sohn Y S, Nechushtai R, Mandel Y, Willner I. Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano, 2018, 12(8): 7538–7545

[132]

Weed R I, Reed C F, Berg G. Is hemoglobin an essential structural component of human erythrocyte membranes? Journal of Clinical Investigation, 1963, 42(4): 581–588

[133]

Ranji-Burachaloo H, Reyhani A, Gurr P A, Dunstan D E, Qiao G G. Combined fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale, 2019, 11(12): 5705–5716

[134]

Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. Rna-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826

[135]

Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823

[136]

Li M, Tao Y, Shu Y, LaRochelle J R, Steinauer A, Thompson D, Schepartz A, Chen Z Y, Liu D R. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. Journal of the American Chemical Society, 2015, 137(44): 14084–14093

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1858KB)

20892

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/