Please wait a minute...

Frontiers of Chemical Science and Engineering

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (6) : 1100-1111
Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)
Ehsan Rahmani, Mohammad Rahmani()
Department of Chemical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran
Download: PDF(1632 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

A solvothermal method was used to synthesize MIL-101(Fe) and MIL-88(Fe), which were used for alkylation of benzene. The synthesized catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscope, dynamic light scattering, and BET techniques. Metal-organic frameworks (MOFs) were modeled to investigate the catalytic performance and existence of mass transfer limitations. Calculated effectiveness factors revealed absence of internal and external mass transfer. Sensitivity analysis revealed best operating conditions over MIL-101 at 120°C and 5 bar and over MIL-88 at 142°C and 9 bar.

Keywords MOFs      alkylation      ethylbenzene      catalysts pellet model      kinetic model      sensitivity analysis     
Corresponding Author(s): Mohammad Rahmani   
Just Accepted Date: 19 November 2019   Online First Date: 06 May 2020    Issue Date: 11 September 2020
 Cite this article:   
Ehsan Rahmani,Mohammad Rahmani. Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1100-1111.
E-mail this article
E-mail Alert
Articles by authors
Ehsan Rahmani
Mohammad Rahmani
Fig.1  Schematic of MOF catalyst particles as a porous medium.
Fig.2  Scheme 1 Alkylation of benzene over MIL-101(Fe) and MIL-88(Fe).
Fig.3  Powder XRD for the synthesized MIL-101(Fe) and MIL-88(Fe).
Fig.4  FT-IR spectra for the synthesized MIL-101(Fe) and MIL-88(Fe).
Fig.5  FESEM micrographs of (a) MIL-88(Fe) and (b) MIL-101(Fe).
Fig.6  DLS results for (a) MIL-101(Fe) and (b) MIL-88(Fe).
Catalyst Particle size /nm Surface area /(m2·g–1) Pore diameter /nm Porosity /e
MIL-101 685 1800 2 0.55
MIL-88 567 3040 0.9 0.75
Tab.1  Summarized properties of the synthesized MOFs
Fig.7  Conversion of the alkylation agent over (a) MIL-101(Fe) and (b) MIL-88(Fe).
Catalyst Temperature /°C Model parameter Activation energy /(kJ·mol–1) R2
ks /(mol·g–1·min–1) KB /(mL·mol–1) KA /(mL·mol–1)
MIL-101(Fe) 125 1.429×104 1.97 543.2 49.9 0.96
150 1.359×104 0.46 386.4 0.97
175 2564.0 0.14 218.1 0.96
MIL-88(Fe) 150 2980.0 0.59 537.5 172.3 0.98
175 4.582×104 0.30 299.0 0.96
200 2.020×104 0.16 283.0 0.98
Tab.2  Parameter estimation results for the LH equationa)
Fig.8  Concentration profiles of ethanol (EtOH), benzene (Bz), ethylbenzene (EB), and toluene (Tol) over MIL-101 (150°C) (a) and MIL-88 (175°C) (b) utilizing the LH model.
Fig.9  Selectivity of ethylbenzene (EB) over MIL-88 (a) and MIL-101 (b) as a function of temperature.
Fig.10  Variation of effectiveness factor of MIL-101(Fe) and MIL-88(Fe) with pellet size.
Catalyst Density /(g·cm–3) Deff /(cm2·s–1) Cwp rA,obsVpApC Agkg
MIL-101(Fe) 0.62 1.93×10–3 8.86×10–4 2.47×10–4
MIL-88(Fe) 1.51 1.55×10–3 1.70×10–3 1.70×10–4
Tab.3  Calculated values for external and internal mass transfer limitations
Fig.11  Temperature sensitivity analysis for MIL-101 (a) and MIL-88 (b).
Fig.12  Pressure sensitivity analysis for MIL-101 (a) and MIL-88 (b).
Deff (m2·s–1) Effective diffusion coefficient
DAB (m2·s–1) Molecular diffusion coefficient
Dk (m2·s–1) Knudsen diffusion coefficient
Dpore (m2·s–1) Pore diffusion coefficient
CA (mol·L–1) Concentration of alkylation agent
rA (mol·m–3·min–1) Alkylation agent reaction rate
T (°C) Reaction temperature
r (m) Pellet radius
f= CA/CA0 Dimensionless concentration
r = r/R0 Dimensionless radius
MA (g·mol–1) Molecular weight of alkylation agent
MB (g·mol–1) Molecular weight of benzene
P (bar) Pressure
s (Å) Effective collision diameter
W Collision integral
e Pellet porosity
t Pellet tortuosity
h Effectiveness factor
CWP Weisz-Prator criterion
Vp (m3) Pellet volume
Ap (m2) Pellet surface
CAg (mol·L–1) Alkylation agent gas phase concentration
kg (m·s–1) Gas phase local mass transfer coefficient
rAobs (mol·m–3·min–1) Alkylation agent observed rate
Pe Pecledt number
Sc Schmidt number
Re Reynolds number
1 D J Tranchemontagne, Z Ni, M O’Keeffe, O M Yaghi. Reticular chemistry of metal-organic polyhedra. Angewandte Chemie International Edition, 2008, 47(28): 5136–5147
2 S S Kaye, A Dailly, O M Yaghi, J R Long. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society, 2007, 129(46): 14176–14177
3 N Al-Janabi, A Alfutimie, F R Siperstein, X Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107
4 M Zhang, B Huang, H Jiang, Y Chen. Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2017, 11(4): 594–602
5 X Zhang, F X Llabrés i Xamena, A Corma. Gold(III)—metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 2009, 265(2): 155–160
6 Y Hu, S Zheng, F Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541
7 Z Q Li, L G Qiu, T Xu, Y Wu, W Wang, Z Y Wu, X Jiang. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters, 2009, 63(1): 78–80
8 T Dewa, T Saiki, Y Aoyama. Enolization and aldol reactions of ketone with a La3+-immobilized organic solid in water. A microporous enolase mimic. Journal of the American Chemical Society, 2001, 123(3): 502–503
9 S Neogi, M K Sharma, P K Bharadwaj. Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A Chemical, 2009, 299(1–2): 1–4
10 J Gascon, U Aktay, M D Hernandez-Alonso, G P M van Klink, F Kapteijn. Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 2009, 261(1): 75–87
11 Z T Yu, Z L Liao, Y S Jiang, G H Li, G D Li, J S Chen. Construction of a microporous inorganic-organic hybrid compound with uranyl units. Chemical Communications, 2004, (16): 1814–1815
12 P Mahata, G Madras, S Natarajan. Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds. Journal of Physical Chemistry B, 2006, 110(28): 13759–13768
13 J A R Navarro, E Barea, J M Salas, N Masciocchi, S Galli, A Sironi, C O Ania, J B Parra. H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers. Inorganic Chemistry, 2006, 45(6): 2397–2399
14 F X Llabrés i Xamena, A Abad, A Corma, H Garcia. MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 2007, 250(2): 294–298
15 K Schlichte, T Kratzke, S Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 2004, 73(1–2): 81–88
16 K S Suslick, P Bhyrappa, J H Chou, M E Kosal, S Nakagaki, D W Smithenry, S R Wilson. Microporous porphyrin solids. Accounts of Chemical Research, 2005, 38(4): 283–291
17 A Dhakshinamoorthy, M Alvaro, H Garcia. Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 2009, 267(1): 1–4
18 N T S Phan, K K A Le, T D Phan. MOF-5 as an efficient heterogeneous catalyst for Friedel-Crafts alkylation reactions. Applied Catalysis A, General, 2010, 382(2): 246–253
19 U Ravon, M E Domine, C Gaudillere, A Desmartin-Chomel, D Farrusseng. MOFs as acid catalysts with shape selectivity properties. New Journal of Chemistry, 2008, 32(6): 937–940
20 M Opanasenko, A Dhakshinamoorthy, J Čejka, H Garcia. Deactivation pathways of the catalytic activity of metal-organic frameworks in condensation reactions. ChemCatChem, 2013, 5(6): 1553–1561
21 C Perego, P Ingallina. Recent advances in the industrial alkylation of aromatics: New catalysts and new processes. Catalysis Today, 2002, 73(1–2): 3–22
22 L T L Nguyen, C V Nguyen, G H Dang, K K A Le, N T S Phan. Towards applications of metal-organic frameworks in catalysis: Friedel-Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst. Journal of Molecular Catalysis A Chemical, 2011, 349(1–2): 28–35
23 G Calleja, R Sanz, G Orcajo, D Briones, P Leo, F Martínez. Copper-based MOF-74 material as effective acid catalyst in Friedel-Crafts acylation of anisole. Catalysis Today, 2014, 227: 130–137
24 E Rahmani, M Rahmani. Alkylation of benzene over Fe-based metal organic frameworks (MOFs) at low temperature condition. Microporous and Mesoporous Materials, 2017, 249: 118–127
25 R V Tompson, S K Loyalka. Chapman-Enskog solution for diffusion: Pidduck’s equation for arbitrary mass ratio. Physics of Fluids, 1987, 30(7): 2073–2075
26 S A Reinecke, B E Sleep. Knudsen diffusion, gas permeability, and water content in an unconsolidated porous medium. Water Resources Research, 2002, 38(12): 16-1–16-15
27 L Pisani. Simple Expression for the tortuosity of porous media. Transport in Porous Media, 2011, 88(2): 193–203
28 E Rahmani, M Rahmani. Al-based MIL-53 metal organic framework (MOF) as the new catalyst for Friedel-Crafts alkylation of benzene. Industrial & Engineering Chemistry Research, 2018, 57(1): 169–178
29 A N Emana, S Chand. Alkylation of benzene with ethanol over modified HZSM-5 zeolite catalysts. Applied Petrochemical Research, 2015, 5(2): 121–134
30 P G Smirniotis, E Ruckenstein. Alkylation of benzene or toluene with MeOH or C2H4 over ZSM-5 or. beta. Zeolite: effect of the zeolite pore openings and of the hydrocarbons involved on the mechanism of alkylation. Industrial & Engineering Chemistry Research, 1995, 34(5): 1517–1528
31 U Sridevi, B K Bhaskar Rao, N C Pradhan. Kinetics of alkylation of benzene with ethanol on AlCl3-impregnated 13X zeolites. Chemical Engineering Journal, 2001, 83(3): 185–189
32 A Dhakshinamoorthy, M Alvaro, H Chevreau, P Horcajada, T Devic, C Serre, H Garcia. Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catalysis Science & Technology, 2012, 2(2): 324–330
Related articles from Frontiers Journals
[1] Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation[J]. Front. Chem. Sci. Eng., 2020, 14(2): 248-257.
[2] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[3] Olga A. Ponomareva, Polina A. Shaposhnik, Marina V. Belova, Boris A. Kolozhvari, Irina I. Ivanova. Novel method for the preparation of Cs-containing FAU(Y) catalysts for aniline methylation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 70-76.
[4] Renxing Wang,Zhenyu Liu,Leiming Ji,Xiaojin Guo,Xi Lin,Junfei Wu,Qingya Liu. Reaction kinetics of CaC2 formation from powder and compressed feeds[J]. Front. Chem. Sci. Eng., 2016, 10(4): 517-525.
[5] Chengyun Huang,Steven E. Rokita. DNA alkylation promoted by an electron-rich quinone methide intermediate[J]. Front. Chem. Sci. Eng., 2016, 10(2): 213-221.
[6] German Sastre. Confinement effects in methanol to olefins catalysed by zeolites: A computational review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 76-89.
[7] Mehdi SEDIGHI,Kamyar KEYVANLOO. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2014, 8(3): 306-311.
[8] Haiding XIANG, Tiefeng WANG. Kinetic study of hydrodesulfurization of coker gas oil in a slurry reactor[J]. Front Chem Sci Eng, 2013, 7(2): 139-144.
[9] Qingchuan CHEN, Yicun WEN, Yu CANG, Li LI, Xuhong GUO, Rui ZHANG. Selective removal of phenol by spherical particles of α-, β- and BoldItalic-cyclodextrin polymers: kinetics and isothermal equilibrium[J]. Front Chem Sci Eng, 2013, 7(2): 162-169.
[10] Guoqiang ZHANG, Lin GAO, Hongguang JIN, Rumou LIN, Sheng LI. Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coal gas[J]. Front Chem Eng Chin, 2010, 4(4): 491-497.
[11] QIAO Congzhen, CAI Yonghong, GUO Quanhui. Benzene alkylation with long chain olefins catalyzed by ionic liquids: a review[J]. Front. Chem. Sci. Eng., 2008, 2(3): 346-352.
[12] QIAO Congzhen, LI Chengyue. Continuous reaction performances of benzene alkylation with long chain olefins catalyzed by ionic liquid[J]. Front. Chem. Sci. Eng., 2008, 2(1): 69-73.
[13] XU Ouguan, SU Hongye, JIN Xiaoming, CHU Jian. Kinetic model for hydroisomerization reaction of C-aromatics[J]. Front. Chem. Sci. Eng., 2008, 2(1): 10-16.
[14] SUN Xuewen, ZHAO Suoqi, LI Hui. Alkylation of benzene with propylene catalyzed by FeCl3-chloropyridine ionic liquid[J]. Front. Chem. Sci. Eng., 2007, 1(3): 292-295.
Full text