Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism

Xingling Zhao, Jun Xu, Feng Deng

PDF(4157 KB)
PDF(4157 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (2) : 159-187. DOI: 10.1007/s11705-019-1885-1
REVIEW ARTICLE
REVIEW ARTICLE

Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism

Author information +
History +

Abstract

Metal-containing zeolite catalysts have found a wide range of applications in heterogeneous catalysis. To understand the nature of metal active sites and the reaction mechanism over such catalysts is of great importance for the establishment of structure-activity relationship. The advanced solid-state NMR (SSNMR) spectroscopy is robust in the study of zeolites and zeolite-catalyzed reactions. In this review, we summarize recent developments and applications of SSNMR for exploring the structure and property of active sites in metal-containing zeolites. Moreover, detailed information on host-guest interactions in the relevant zeolite catalysis obtained by SSNMR is also discussed. Finally, we highlight the mechanistic understanding of catalytic reactions on metal-containing zeolites based on the observation of key surface species and active intermediates.

Graphical abstract

Keywords

metal-containing zeolites / solid-state NMR / active site / host-guest interaction / reaction mechanism

Cite this article

Download citation ▾
Xingling Zhao, Jun Xu, Feng Deng. Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism. Front. Chem. Sci. Eng., 2020, 14(2): 159‒187 https://doi.org/10.1007/s11705-019-1885-1

References

[1]
Jacobs P, Flanigen E M, Jansen J, van Bekkum H. Introduction to Zeolite Science and Practice. Amsterdam: Elsevier, 2001, 11–67
[2]
IZA Structure Commission Website
[3]
Almutairi S M T, Mezari B, Filonenko G A, Magusin P C M M, Rigutto M S, Pidko E A, Hensen E J M. Influence of extraframework aluminum on the Brønsted acidity and catalytic reactivity of faujasite zeolite. ChemCatChem, 2013, 5(2): 452–466
[4]
Wang Q L, Giannetto G, Guisnet M. Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y-zeolites in n-heptane cracking. Journal of Catalysis, 1991, 130(2): 471–482
[5]
Li S H, Zheng A M, Su Y C, Zhang H L, Chen L, Yang J, Ye C H, Deng F. Brønsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study. Journal of the American Chemical Society, 2007, 129(36): 11161–11171
[6]
Vogt E T C, Weckhuysen B M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 2015, 44(20): 7342–7370
[7]
Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels B F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 2016, 45(3): 584–611
[8]
Corma A, Nemeth L T, Renz M, Valencia S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature, 2001, 412(6845): 423–425
[9]
Holm M S, Saravanamurugan S, Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science, 2010, 328(5978): 602–605
[10]
Moliner M, Roman-Leshkov Y, Davis M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6164–6168
[11]
Roman-Leshkov Y, Moliner M, Labinger J A, Davis M E. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angewandte Chemie International Edition, 2010, 49(47): 8954–8957
[12]
Taarning E, Osmundsen C M, Yang X B, Voss B, Andersen S I, Christensen C H. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy & Environmental Science, 2011, 4(3): 793–804
[13]
Nikolla E, Roman-Leshkov Y, Moliner M, Davis M E. “One-Pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catalysis, 2011, 1(4): 408–410
[14]
Bermejo-Deval R, Assary R S, Nikolla E, Moliner M, Roman-Leshkov Y, Hwang S J, Palsdottir A, Silverman D, Lobo R F, Curtiss L A, Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 9727–9732
[15]
Kubicka D, Kubickova I, Cejka J. Application of molecular sieves in transformations of biomass and biomass-derived feedstocks. Catalysis Reviews, 2013, 55(1): 1–78
[16]
Dapsens P Y, Mondelli C, Perez-Ramirez J. Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chemical Society Reviews, 2015, 44(20): 7025–7043
[17]
Luo H Y, Lewis J D, Roman-Leshkov Y. Lewis acid zeolites for biomass conversion: Perspectives and challenges on reactivity, synthesis, and stability. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 663–692
[18]
Smeets P J, Woertink J S, Sels B F, Solomon E I, Schoonheydt R A. Transition-metal ions in zeolites: Coordination and activation of oxygen. Inorganic Chemistry, 2010, 49(8): 3573–3583
[19]
Kosinov N, Liu C, Hensen E J M, Pidko E A. Engineering of transition metal catalysts confined in zeolites. Chemistry of Materials, 2018, 30(10): 3177–3198
[20]
Singh J, Lamberti C, van Bokhoven J A. Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chemical Society Reviews, 2010, 39(12): 4754–4766
[21]
Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850
[22]
Sushkevich V L, Palagin D, Ranocchiari M, van Bokhoven J A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science, 2017, 356(6337): 523–527
[23]
Newton M A, Knorpp A J, Pinar A B, Sushkevich V L, Palagin D, van Bokhoven J A. On the mechanism underlying the direct conversion of methane to methanol by copper hosted in zeolites; braiding Cu K-Edge XANES and reactivity studies. Journal of the American Chemical Society, 2018, 140(32): 10090–10093
[24]
Grundner S, Markovits M A C, Li G, Tromp M, Pidko E A, Hensen E J M, Jentys A, Sanchez-Sanchez M, Lercher J A. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6(1): 1–9
[25]
Almutairi S M T, Mezari B, Magusin P C M M, Pidko E A, Hensen E J M. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic Zn complexes. ACS Catalysis, 2012, 2(1): 71–83
[26]
Groothaert M H, van Bokhoven J A, Battiston A A, Weckhuysen B M, Schoonheydt R A. Bis(mu-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: A combined in situ XAFS, UV-Vis-Near-IR, and kinetic study. Journal of the American Chemical Society, 2003, 125(25): 7629–7640
[27]
Smeets P J, Groothaert M H, Schoonheydt R A. Cu based zeolites: A UV-vis study of the active site in the selective methane oxidation at low temperatures. Catalysis Today, 2005, 110(3-4): 303–309
[28]
Snyder B E R, Vanelderen P, Bols M L, Hallaert S D, Bottger L H, Ungur L, Pierloot K, Schoonheydt R A, Sels B F, Solomon E I. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature, 2016, 536(7616): 317–321
[29]
Fitzgerald J J. Solid-State NMR Spectroscopy of Inorganic Materials. Washington: American Chemical Society, 1999, 2–120
[30]
Qi G D, Wang Q, Xu J, Trebosc J, Lafon O, Wang C, Amoureux J P, Deng F. Synergic effect of active sites in zinc-modified ZSM-5 zeolites as revealed by high-field solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2016, 55(51): 15826–15830
[31]
Gao P, Wang Q, Xu J, Qi G D, Wang C, Zhou X, Zhou X L, Feng N D, Liu X L, Deng F. Bronsted/Lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy. ACS Catalysis, 2018, 8(1): 69–74
[32]
Qi G D, Wang Q, Xu J, Wu Q M, Wang C, Zhao X L, Meng X J, Xiao F S, Deng F. Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Communications Chemistry, 2018, 1(1): 1–7
[33]
Qi G D, Wang Q, Chu Y Y, Xu J, Zheng A M, Su J H, Chen J F, Wang C, Wang W Y, Gao P, Room temperature stable zinc carbonyl complex formed in zeolite ZSM-5 and its hydrogenation reactivity: A solid-state NMR study. Chemical Communications, 2015, 51(44): 9177–9180
[34]
Li S H, Li J, Zheng A M, Deng F. Solid-state NMR characterization of the structure and catalytic reaction mechanism of solid acid catalysts. Acta Physico-Chimica Sinica, 2017, 33(2): 270–282 (in Chinese)
[35]
Hunger M. Brønsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catalysis Reviews, 1997, 39(4): 345–393
[36]
Jiang Y J, Huang J, Dai W L, Hunger M. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nuclear Magnetic Resonance, 2011, 39(3-4): 116–141
[37]
Zheng A M, Huang S J, Wang Q, Zhang H L, Deng F, Liu S B. Progress in development and application of solid-state NMR for solid acid catalysis. Chinese Journal of Catalysis, 2013, 34(3): 436–491
[38]
Gutmann T, Grunberg A, Rothermel N, Werner M, Srour M, Abdulhussain S, Tan S L, Xu Y P, Breitzke H, Buntkowsky G. Solid-state NMR concepts for the investigation of supported transition metal catalysts and nanoparticles. Solid State Nuclear Magnetic Resonance, 2013, 55-56: 1–11
[39]
Zheng A M, Li S H, Liu S B, Deng F. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Accounts of Chemical Research, 2016, 49(4): 655–663
[40]
Blasco T. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 2010, 39(12): 4685–4702
[41]
Zhang W P, Xu S T, Han X W, Bao X H. In situ solid-state NMR for heterogeneous catalysis: A joint experimental and theoretical approach. Chemical Society Reviews, 2012, 41(1): 192–210
[42]
Dedecek J, Sobalik Z, Wichterlova B. Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis. Catalysis Reviews, 2012, 54(2): 135–223
[43]
Huang J, Jiang Y, Marthala V R R, Thomas B, Romanova E, Hunger M. Characterization and acidic properties of aluminum-exchanged zeolites X and Y. Journal of Physical Chemistry C, 2008, 112(10): 3811–3818
[44]
Deng F, Yue Y, Ye C H. 1H/27Al TRAPDOR NMR studies on aluminum species in dealuminated zeolites. Solid State Nuclear Magnetic Resonance, 1998, 10(3): 151–160
[45]
Deng F, Yue Y, Ye C H. Observation of nonframework Al species in zeolite beta by solid-state NMR spectroscopy. Journal of Physical Chemistry B, 1998, 102(27): 5252–5256
[46]
Jiao J, Altwasser S, Wang W, Weitkamp J, Hunger M. State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy. Journal of Physical Chemistry B, 2004, 108(38): 14305–14310
[47]
Hunger M, Horvath T. Multi-nuclear solid-state NMR-study of the local-structure of siohal groups and their interaction with probe-molecules in dehydrated faujasite, mordenite and zeolite ZSM-5. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 1995, 99(11): 1316–1320
[48]
Jiao J, Kanellopoulos J, Wang W, Ray S S, Foerster H, Freude D, Hunger M. Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0= 9.4 to 17.6 T. Physical Chemistry Chemical Physics, 2005, 7(17): 3221–3226
[49]
Medek A, Harwood J S, Frydman L. Multiple-quantum magic-angle spinning NMR: A new method for the study of quadrupolar nuclei in solids. Journal of the American Chemical Society, 1995, 117(51): 12779–12787
[50]
Kentgens A P M, Iuga D, Kalwei M, Koller H. Direct observation of Brønsted acidic sites in dehydrated zeolite H-ZSM5 using DFS-enhanced 27Al MQMAS NMR spectroscopy. Journal of the American Chemical Society, 2001, 123(12): 2925–2926
[51]
Brown S P, Spiess H W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chemical Reviews, 2001, 101(12): 4125–4155
[52]
Li S H, Huang S J, Shen W L, Zhang H L, Fang H J, Zheng A M, Liu S B, Deng F. Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy. Journal of Physical Chemistry C, 2008, 112(37): 14486–14494
[53]
Yu Z W, Li S H, Wang Q, Zheng A M, Jun X, Chen L, Deng F. Bronsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. Journal of Physical Chemistry C, 2011, 115(45): 22320–22327
[54]
Yu Z W, Wang Q, Chen L, Deng F. Bronsted/Lewis acid sites synergy in H-MCM-22 zeolite studied by 1H and 27Al DQ-MAS NMR spectroscopy. Chinese Journal of Catalysis, 2012, 33(1): 129–139
[55]
Wang Q, Hu B, Lafon O, Trebosc J, Deng F, Amoureux J P. Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field. Journal of Magnetic Resonance (San Diego, Calif.), 2009, 200(2): 251–260
[56]
Yu Z W, Zheng A M, Wang Q A, Chen L, Xu J, Amoureux J P, Deng F. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angewandte Chemie International Edition, 2010, 49(46): 8657–8661
[57]
Zheng A M, Liu S B, Deng F. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nuclear Magnetic Resonance, 2013, 55�?6: 12–27
[58]
Biaglow A I, Gorte R J, Kokotailo G T, White D. A probe of Brønsted site acidity in zeolites: 13C chemical-shift of acetone. Journal of Catalysis, 1994, 148(2): 779–786
[59]
Barich D H, Nicholas J B, Xu T, Haw J F. Theoretical and experimental study of the 13C chemical shift tensors of acetone complexed with Brønsted and Lewis acids. Journal of the American Chemical Society, 1998, 120(47): 12342–12350
[60]
Yang J, Janik M J, Ma D, Zheng A M, Zhang M J, Neurock M, Davis R J, Ye C H, Deng F. Location, acid strength, and mobility of the acidic protons in Keggin 12-H3PW12O40: A combined solid-state NMR spectroscopy and DFT quantum chemical calculation study. Journal of the American Chemical Society, 2005, 127(51): 18274–18280
[61]
Fang H J, Zheng A M, Chu Y Y, Deng F. 13C chemical shift of adsorbed acetone for measuring the acid strength of solid acids: A theoretical calculation study. Journal of Physical Chemistry C, 2010, 114(29): 12711–12718
[62]
Gabrienko A A, Arzumanov S S, Freude D, Stepanov A G. Propane aromatization on Zn-modified zeolite BEA studied by solid-state NMR in situ. Journal of Physical Chemistry C, 2010, 114(29): 12681–12688
[63]
Fricke R, Kosslick H, Lischke G, Richter M. Incorporation of gallium into zeolites: Syntheses, properties and catalytic application. Chemical Reviews, 2000, 100(6): 2303–2405
[64]
Wang L S, Tao L X, Xie M S, Xu G F, Huang J S, Xu Y D. Dehydrogenation and aromatization of methane under nonoxidizing conditions. Catalysis Letters, 1993, 21(1-2): 35–41
[65]
Spivey J J, Hutchings G. Catalytic aromatization of methane. Chemical Society Reviews, 2014, 43(3): 792–803
[66]
Yang J, Ma D, Deng F, Luo Q, Zhang M J, Bao X H, Ye C H. Solid state 13C NMR studies of methane dehydroaromatization reaction on Mo/HZSM-5 and W/HZSM-5 catalysts. Chemical Communications, 2002, (24): 3046–3047
[67]
Karakaya C, Kee R J. Progress in the direct catalytic conversion of methane to fuels and chemicals. Progress in Energy and Combustion Science, 2016, 55: 60–97
[68]
Kosinov N, Coumans F J A G, Uslamin E A, Wijpkema A S G, Mezari B, Hensen E J M. Methane dehydroaromatization by Mo/HZSM-5: Mono- or bifunctional catalysis? ACS Catalysis, 2017, 7(1): 520–529
[69]
Zheng H, Ma D, Bao X H, Hu J Z, Kwak J H, Wang Y, Peden C H F. Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy. Journal of the American Chemical Society, 2008, 130(12): 3722–3723
[70]
Hensen E J M, Garcia-Sanchez M, Rane N, Magusin P C M M, Liu P H, Chao K J, van Santen R A. In situ GaK edge XANES study of the activation of Ga/ZSM-5 prepared by chemical vapor deposition of trimethylgallium. Catalysis Letters, 2005, 101(1-2): 79–85
[71]
Filek U, Bressel A, Sulikowski B, Hunger M. Structural stability and Brønsted acidity of thermally treated AlPW12O40 in comparison with H3PW12O40. Journal of Physical Chemistry C, 2008, 112(49): 19470–19476
[72]
Zheng A M, Zhang H L, Chen L, Yue Y, Ye C H, Deng F. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. Journal of Physical Chemistry B, 2007, 111(12): 3085–3089
[73]
Fraissard J, Ito T. 129Xe-NMR study of adsorbed xenon a new method for studying zeolites and metal-zeolites. Zeolites, 1988, 8(5): 350–361
[74]
Li X J, Zhang W P, Liu S L, Xu L Y, Han X W, Bao X H. The role of alumina in the supported Mo/Hbeta-Al2O3 catalyst for olefin metathesis: A high-resolution solid-state NMR and electron microscopy study. Journal of Catalysis, 2007, 250(1): 55–66
[75]
Xu J, Zheng A M, Wang X M, Qi G D, Su J H, Du J F, Gan Z H, Wu J F, Wang W, Deng F. Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: Insight from solid-state NMR and theoretical calculations. Chemical Science (Cambridge), 2012, 3(10): 2932–2940
[76]
Daniel C, Elbaraoui A, Aguado S, Springuel-Huet M A, Nossov A, Fontaine J P, Topin S, Taffary T, Deliere L, Schuurman Y, Xenon capture on silver-loaded zeolites: Characterization of very strong adsorption sites. Journal of Physical Chemistry C, 2013, 117(29): 15122–15129
[77]
Xu S T, Zhang W P, Liu X C, Han X W, Bao X H. Enhanced in situ continuous-flow MAS NMR for reaction kinetics in the nanocages. Journal of the American Chemical Society, 2009, 131(38): 13722–13727
[78]
Moliner M. State of the art of Lewis acid-containing zeolites: Lessons from fine chemistry to new biomass transformation processes. Dalton Transactions (Cambridge, England), 2014, 43(11): 4197–4208
[79]
Corma A, Domine M E, Nemeth L, Valencia S. Al-free Sn-beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Journal of the American Chemical Society, 2002, 124(13): 3194–3195
[80]
Boronat M, Concepcion P, Corma A, Renz M, Valencia S. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 2005, 234(1): 111–118
[81]
Bermejo-Deval R, Gounder R, Davis M E. Framework and extraframework tin sites in zeolite beta react glucose differently. ACS Catalysis, 2012, 2(12): 2705–2713
[82]
Bermejo-Deval R, Orazov M, Gounder R, Hwang S J, Davis M E. Active sites in Sn-beta for glucose isomerization to fructose and epimerization to mannose. ACS Catalysis, 2014, 4(7): 2288–2297
[83]
Rossini A J, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research, 2013, 46(9): 1942–1951
[84]
Gunther W R, Michaelis V K, Caporini M A, Griffin R G, Roman-Leshkov Y. Dynamic nuclear polarization NMR enables the analysis of Sn-beta zeolite prepared with natural abundance 119Sn precursors. Journal of the American Chemical Society, 2014, 136(17): 6219–6222
[85]
Wolf P, Valla M, Rossini A J, Comas-Vives A, Nunez-Zarur F, Malaman B, Lesage A, Emsley L, Coperet C, Hermans I. NMR signatures of the active sites in Sn-beta zeolite. Angewandte Chemie International Edition, 2014, 53(38): 10179–10183
[86]
Kolyagin Y G, Yakimov A V, Tolborg S, Vennestrom P N R, Ivanova I I. Application of 119Sn CPMG MAS NMR for fast characterization of Sn sites in zeolites with natural 119Sn isotope abundance. Journal of Physical Chemistry Letters, 2016, 7(7): 1249–1253
[87]
Kolyagin Y G, Yakimov A V, Tolborg S, Vennestrom P N R, Ivanova I I. Direct observation of tin in different T-sites of Sn-BEA by one- and two-dimensional 119Sn MAS NMR spectroscopy. Journal of Physical Chemistry Letters, 2018, 9(13): 3738–3743
[88]
Wolf P, Valla M, Nunez-Zarur F, Comas-Vives A, Rossini A J, Firth C, Kallas H, Lesage A, Emsley L, Coperet C, Correlating synthetic methods, morphology, atomic-level structure, and catalytic activity of Sn-beta catalysts. ACS Catalysis, 2016, 6(7): 4047–4063
[89]
Josephson T R, Jenness G R, Vlachos D G, Caratzoulas S. Distribution of open sites in Sn-beta zeolite. Microporous and Mesoporous Materials, 2017, 245: 45–50
[90]
Jiao J, Kanellopoulos J, Wang W, Ray S S, Foerster H, Freude D, Hunger M. Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0= 9.4 to 17.6 T. Physical Chemistry Chemical Physics, 2005, 7(17): 3221–3226
[91]
Jiao J, Wang W, Sulikowski B, Weitkamp J, Hunger M. 29Si and 27Al MAS NMR characterization of non-hydrated zeolites Y upon adsorption of ammonia. Microporous and Mesoporous Materials, 2006, 90(1): 246–250
[92]
Li S, Pourpoint F, Trébosc J, Zhou L, Lafon O, Shen M, Zheng A, Wang Q, Amoureux J P, Deng F. Host-guest interactions in dealuminated HY zeolite probed by 13C-27Al solid-state NMR spectroscopy. Journal of Physical Chemistry Letters, 2014, 5(17): 3068–3072
[93]
Corma A, Garcia H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. European Journal of Inorganic Chemistry, 2004, 2004(6): 1143–1164
[94]
Haw J, Marcus D. Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis. Topics in Catalysis, 2005, 34(1-4): 41–48
[95]
Song W, Fu H, Haw J F. Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34. Journal of the American Chemical Society, 2001, 123(20): 4749–4754
[96]
Wang C, Wang Q, Xu J, Qi G D, Gao P, Wang W Y, Zou Y Y, Feng N D, Liu X L, Deng F. Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2016, 55(7): 2507–2511
[97]
Pourpoint F, Trebosc J, Gauvin R M, Wang Q, Lafon O, Deng F, Amoureux J P. Measurement of aluminum-carbon distances using S-RESPDOR NMR experiments. ChemPhysChem, 2012, 13(16): 3605–3615
[98]
Wang C, Xu J, Wang Q, Zhou X, Qi G D, Feng N D, Liu X L, Meng X J, Xiao F S, Deng F. Host-guest interactions and their catalytic consequences in methanol to olefins conversion on zeolites studied by 13C-27Al double-resonance solid-state NMR spectroscopy. ACS Catalysis, 2017, 7(9): 6094–6103
[99]
Sazama P, Wichterlova B, Dedecek J, Tvaruzkova Z, Musilova Z, Palumbo L, Sklenak S, Gonsiorova O. FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, 2011, 143(1): 87–96
[100]
Schallmoser S, Ikuno T, Wagenhofer M F, Kolvenbach R, Haller G L, Sanchez-Sanchez M, Lercher J A. Impact of the local environment of Bronsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking. Journal of Catalysis, 2014, 316: 93–102
[101]
Wang C, Chu Y Y, Xu J, Wang Q, Qi G D, Gao P, Zhou X, Deng F. Extra-framework aluminum-assisted initial C-C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angewandte Chemie International Edition, 2018, 57(32): 10197–10201
[102]
Groothaert M H, Smeets P J, Sels B F, Jacobs P A, Schoonheydt R A. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. Journal of the American Chemical Society, 2005, 127(5): 1394–1395
[103]
Snyder B E R, Bols M L, Schoonheydt R A, Sels B F, Solomon E I. Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chemical Reviews, 2018, 118(5): 2718–2768
[104]
Kolyagin Y G, Ivanova I I, Ordomsky V V, Gedeon A, Pirogov Y A. Methane activation over Zn-modified MFI zeolite: NMR evidence for Zn-methyl surface species formation. Journal of Physical Chemistry C, 2008, 112(50): 20065–20069
[105]
Kazansky V B, Subbotina I R, Rane N, van Santen R A, Hensen E J M. On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations. Physical Chemistry Chemical Physics, 2005, 7(16): 3088–3092
[106]
Kazansky V B, Borovkov V Y, Serikh A I, van Santen R A, Anderson B G. Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM-5 zeolite prepared by incipient wetness impregnation. Catalysis Letters, 2000, 66(1-2): 39–47
[107]
Pidko E A, Xu J, Mojet B L, Lefferts L, Subbotina I R, Kazansky V B, van Santen R A. Interplay of bonding and geometry of the adsorption complexes of light alkanes within cationic faujasites. Combined spectroscopic and computational study. Journal of Physical Chemistry B, 2006, 110(45): 22618–22627
[108]
Kazansky V B, Serykh A I, Pidko E A. DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: Methane adsorption. Journal of Catalysis, 2004, 225(2): 369–373
[109]
Biscardi J A, Meitzner G D, Iglesia E. Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. Journal of Catalysis, 1998, 179(1): 192–202
[110]
Kolyagin Y G, Ordomsky V V, Khimyak Y Z, Rebrov A I, Fajula F, Ivanova I I. Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques. Journal of Catalysis, 2006, 238(1): 122–133
[111]
Kolyagin Y G, Ivanova I I, Pirogov Y A. 1H and 13C MAS NMR studies of light alkanes activation over MFI zeolite modified by Zn vapour. Solid State Nuclear Magnetic Resonance, 2009, 35(2): 104–112
[112]
Barbosa L, Zhidomirov G M, van Santen R A. Theoretical study of methane adsorption on Zn(II) zeolites. Physical Chemistry Chemical Physics, 2000, 2(17): 3909–3918
[113]
Pidko E A, van Santen R A. Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite: A comprehensive DFT study. Journal of Physical Chemistry C, 2007, 111(6): 2643–2655
[114]
Benco L, Bucko T, Hafner J, Toulhoat H. Periodic DFT calculations of the stability of Al/Si substitutions and extraframework Zn2+ cations in mordenite and reaction pathway for the dissociation of H2 and CH4. Journal of Physical Chemistry B, 2005, 109(43): 20361–20369
[115]
Frash M V, van Santen R A. Activation of ethane in Zn-exchanged zeolites: A theoretical study. Physical Chemistry Chemical Physics, 2000, 2(5): 1085–1089
[116]
Ono Y. Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites. Catalysis Reviews, 1992, 34(3): 179–226
[117]
Bhan A, Delgass W N. Propane aromatization over HZSM-5 and Ga/HZSM-5 catalysts. Catalysis Reviews, 2008, 50(1): 19–151
[118]
Meriaudeau P, Naccache C. The role of Ga2O3 and proton acidity on the dehydrogenating activity of Ga2O3-HZSM-5 catalysts: Evidence of a bifunctional mechanism. Journal of Molecular Catalysis, 1990, 59(3): L31–L36
[119]
Derouane E G, Hamid S B A, Ivanova I I, Blom N, Hojlundnielsen P E. Thermodynamic and mechanistic studies of initial-stages in propane aromatization over Ga-modified H-ZSM-5 catalysts. Journal of Molecular Catalysis, 1994, 86(1-3): 371–400
[120]
Price G L, Kanazirev V, Dooley K M, Hart V I. On the mechanism of propane dehydrocyclization over cation-containing, proton-poor MFI zeolite. Journal of Catalysis, 1998, 173(1): 17–27
[121]
Anunziata O A, Pierella L B. Nature of the active sites in H-ZSM-11 zeolite modified with Zn2+ and Ga3+. Catalysis Letters, 1993, 19(2): 143–151
[122]
Derouane E G, He H Y, Derouane-Abd Hamid S B, Ivanova I I. In situ MAS NMR investigations of molecular sieves and zeolite-catalyzed reactions. Catalysis Letters, 1999, 58(1): 1–19
[123]
Shubin A A, Zhidomirov G M, Kazansky V B, van Santen R A. DFT cluster modeling of molecular and dissociative hydrogen adsorption on Zn2+ ions with distant placing of aluminum in the framework of high-silica zeolites. Catalysis Letters, 2003, 90(3): 137–142
[124]
Barbosa L A M M, van Santen R A. Influence of zeolite framework geometry structure on the stability of the [ZnOZn]2+ cluster by periodical density functional theory. Journal of Physical Chemistry B, 2003, 107(19): 4532–4536
[125]
Wu J F, Wang W D, Xu J, Deng F, Wang W. Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(47): 14016–14025
[126]
Gabrienko A A, Arzumanov S S, Toktarev A V, Danilova I G, Prosvirin I P, Kriventsov V V, Zaikovskii V I, Freude D, Stepanov A G. Different efficiency of Zn2+ and ZnO species for methane activation on Zn-modified zeolite. ACS Catalysis, 2017, 7(3): 1818–1830
[127]
Wang X M, Qi G D, Xu J, Li B J, Wang C, Deng F. NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst. Angewandte Chemie International Edition, 2012, 51(16): 3850–3853
[128]
Choudhary V R, Mondal K C, Mulla S A R. Simultaneous conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites. Angewandte Chemie International Edition, 2005, 44(28): 4381–4385
[129]
Wang X M, Xu J, Qi G D, Li B J, Wang C, Deng F. Alkylation of benzene with methane over ZnZSM-5 zeolites studied with solid-state NMR spectroscopy. Journal of Physical Chemistry C, 2013, 117(8): 4018–4023
[130]
Luzgin M V, Rogov V A, Arzumanov S S, Toktarev A V, Stepanov A G, Parmon V N. Understanding methane aromatization on a Zn-modified high-silica zeolite. Angewandte Chemie International Edition, 2008, 47(24): 4559–4562
[131]
Wang X M, Xu J, Qi G D, Wang C, Wang W Y, Gao P, Wang Q, Liu X L, Feng N D, Deng F. Carbonylation of ethane with carbon monoxide over Zn-modified ZSM-5 zeolites studied by in situ solid-state NMR spectroscopy. Journal of Catalysis, 2017, 345: 228–235
[132]
Chang C D, Silvestri A J. Conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977, 47(2): 249–259
[133]
Ono Y, Adachi H, Senoda Y. Selective conversion of methanol into aromatic-hydrocarbons over zinc-exchanged ZSM-5 zeolites. Journal of the Chemical Society-Faraday Transactions 1, 1988, 84: 1091–1099
[134]
Inoue Y, Nakashiro K, Ono Y. Selective conversion of methanol into aromatic-hydrocarbons over silver-exchanged ZSM-5 zeolites. Microporous Materials, 1995, 4(5): 379–383
[135]
Zeng D F, Yang J, Wang J Q, Xu J, Yang Y X, Ye C H, Deng F. Solid-state NMR studies of methanol-to-aromatics reaction over silver exchanged HZSM-5 zeolite. Microporous and Mesoporous Materials, 2007, 98(1-3): 214–219
[136]
Conte M, Lopez-Sanchez J A, He Q, Morgan D J, Ryabenkova Y, Bartley J K, Carley A F, Taylor S H, Kiely C J, Khalid K, Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology, 2012, 2(1): 105–112
[137]
Choudhary V R, Kinage A K. Methanol-to-aromatics conversion over H-Gallosilicate (MFI): Influence of Si/Ga ratio, degree of H+ exchange, pretreatment conditions, and poisoning of strong acid sites. Zeolites, 1995, 15(8): 732–738
[138]
Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 2007, 249(2): 195–207
[139]
Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K P, Kolboe S, Bjorgen M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes. Journal of the American Chemical Society, 2006, 128(46): 14770–14771
[140]
Westgard Erichsen M, Svelle S, Olsbye U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction. Catalysis Today, 2013, 215: 216–223
[141]
Freeman D, Wells R P K, Hutchings G J. Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts. Journal of Catalysis, 2002, 205(2): 358–365
[142]
Haw J F, Nicholas J B, Song W G, Deng F, Wang Z K, Xu T, Heneghan C S. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. Journal of the American Chemical Society, 2000, 122(19): 4763–4775
[143]
Dai W L, Wang C M, Dyballa M, Wu G J, Guan N J, Li L D, Xie Z K, Hunger M. Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34. ACS Catalysis, 2015, 5(1): 317–326
[144]
Wang C, Yi X F, Xu J, Qi G D, Gao P, Wang W Y, Chu Y Y, Wang Q, Feng N D, Liu X L, Experimental evidence on the formation of ethene through carbocations in methanol conversion over H-ZSM-5 zeolite. Chemistry–A European Journal. 2015, 21(34): 12061–12068
[145]
Xu S T, Zheng A M, Wei Y X, Chen J R, Li J Z, Chu Y Y, Zhang M Z, Wang Q Y, Zhou Y, Wang J B, Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angewandte Chemie International Edition, 2013, 52(44): 11564–11568
[146]
Wang C, Xu J, Qi G D, Gong Y J, Wang W Y, Gao P, Wang Q, Feng N D, Liu X L, Deng F. Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5. Journal of Catalysis, 2015, 332: 127–137
[147]
Wang C, Sun X Y, Xu J, Qi G D, Wang W Y, Zhao X L, Li W Z, Wang Q, Deng F. Impact of temporal and spatial distribution of hydrocarbon pool on methanol conversion over H-ZSM-5. Journal of Catalysis, 2017, 354: 138–151
[148]
Wang J B, Wei Y X, Li J Z, Xu S T, Zhang W N, He Y L, Chen J R, Zhang M Z, Zheng A M, Deng F, Direct observation of methylcyclopentenyl cations (MCP+) and olefin generation in methanol conversion over TON zeolite. Catalysis Science & Technology, 2016, 6(1): 89–97
[149]
Gao P, Xu J, Qi G D, Wang C, Wang Q, Zhao Y X, Zhang Y H, Feng N D, Zhao X L, Li J L, A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: Understanding the dehydrogenation process. ACS Catalysis, 2018, 8(10): 9809–9820
[150]
Xiao D, Xu S T, Brownbill N J, Paul S, Chen L H, Pawsey S, Aussenac F, Su B L, Han X W, Bao X H, Fast detection and structural identification of carbocations on zeolites by dynamic nuclear polarization enhanced solid-state NMR. Chemical Science (Cambridge), 2018, 9(43): 8184–8193

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21622311, 21473245, 21603265, 21733013, 21773296), Key Program for Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH027) and Hubei Provincial Natural Science Foundation (Grant No. 2017CFA032).

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4157 KB)

Accesses

Citations

Detail

Sections
Recommended

/