Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media

Cyrine Ayed , Wei Huang , Kai A. I. Zhang

Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 397 -404.

PDF (1498KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 397 -404. DOI: 10.1007/s11705-019-1884-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media

Author information +
History +
PDF (1498KB)

Abstract

Covalent triazine frameworks (CTFs) have been recently employed for visible light-driven photocatalysis due to their unique optical and electronic properties. However, the usually highly hydrophobic nature of CTFs, which originates from their overall aromatic backbone, leads to limitations of CTFs for applications in aqueous media. In this study, we aim to extend the range of the application media of CTFs and design hybrid material of a CTF and mesoporous silica (SBA-15) for efficient photocatalysis in aqueous medium. A thiophene-containing CTF was directly synthesized in mesopores of SBA-15. Due to the high surface area and the added hydrophilic properties by silica, the hybrid material demonstrated excellent adsorption of organic molecules in water. This leads not only to high photocatalytic performance of the hybrid material for the degradation of organic dyes in water, but also for efficient photocatalysis in solvent-free and solid state. Furthermore, the reusability, stability and easy recovery of the hybrid material offers promising metal-free heterogeneous photocatalyst for broader applications in different reaction media.

Graphical abstract

Keywords

photocatalysis / covalent triazine framework / aqueous medium / SBA-15 / solid state

Cite this article

Download citation ▾
Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media. Front. Chem. Sci. Eng., 2020, 14(3): 397-404 DOI:10.1007/s11705-019-1884-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y, Jin S. Recent advancements in the synthesis of covalent triazine frameworks for energy and environmental applications. Polymers, 2018, 11(1): 31

[2]

Artz J. Covalent triazine-based frameworks—tailor-made catalysts and catalyst supports for molecular and nanoparticulate species. ChemCatChem, 2018, 10(8): 1753–1771

[3]

Liu M, Guo L, Jin S, Tan B. Covalent triazine frameworks: Synthesis and applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(10): 5153–5172

[4]

Zhu X, Tian C C, Mahurin S M, Chai S H, Wang C M, Brown S, Veith G M, Luo H M, Liu H L, Dai S. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. Journal of the American Chemical Society, 2012, 134(25): 10478–10484

[5]

Liebl M R, Senker J. Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chemistry of Materials, 2013, 25(6): 970–980

[6]

Hao L, Ning J, Luo B, Wang B, Zhang Y, Tang Z, Yang J, Thomas A, Zhi L. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. Journal of the American Chemical Society, 2015, 137(1): 219–225

[7]

Xu F, Yang S, Jiang G, Ye Q, Wei B, Wang H. Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium–sulfur batteries. ACS Applied Materials & Interfaces, 2017, 9(43): 37731–37738

[8]

Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Advanced Materials, 2018, 30(11): 1705401

[9]

Bi J, Fang W, Li L, Wang J, Liang S, He Y, Liu M, Wu L. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromolecular Rapid Communications, 2015, 36(20): 1799–1805

[10]

Guo L, Niu Y, Xu H, Li Q, Razzaque S, Huang Q, Jin S, Tan B. Engineering heteroatoms with atomic precision in donor-acceptor covalent triazine frameworks to boost photocatalytic hydrogen production. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(40): 19775–19781

[11]

Xie J, Shevlin S A, Ruan Q, Moniz S J A, Liu Y, Liu X, Li Y, Lau C C, Guo Z X, Tang J. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy & Environmental Science, 2018, 11(6): 1617–1624

[12]

Huang W, Ma B C, Lu H, Li R, Wang L, Landfester K, Zhang K A I. Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework. ACS Catalysis, 2017, 7(8): 5438–5442

[13]

Zhu G, Shi S, Liu M, Zhao L, Wang M, Zheng X, Gao J, Xu J. Formation of strong basicity on covalent triazine frameworks as catalysts for the oxidation of methylene compounds. ACS Applied Materials & Interfaces, 2018, 10(15): 12612–12617

[14]

Artz J, Mallmann S, Palkovits R. Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. ChemSusChem, 2015, 8(4): 672–679

[15]

Streat M, Sweetland L A. Removal of pesticides from water using hypercrosslinked polymer phases: Part 2— sorption studies. Process Safety and Environmental Protection, 1998, 76(2): 127–134

[16]

Penner N A, Nesterenko P N, Ilyin M M, Tsyurupa M P, Davankov V A. Investigation of the properties of hypercrosslinked polystyrene as a stationary phase for high-performance liquid chromatography. Chromatographia, 1999, 50(9): 611–620

[17]

Kuhn P, Krüger K, Thomas A, Antonietti M. “Everything is surface”: Tunable polymer organic frameworks with ultrahigh dye sorption capacity. Chemical Communications, 2008, (44): 5815–5817

[18]

Huang W, Ma B C, Lu H, Li R, Wang L, Landfester K, Zhang K A I. Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework. ACS Catalysis, 2017, 7(8): 5438–5442

[19]

Law K Y. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. Journal of Physical Chemistry Letters, 2014, 5(4): 686–688

[20]

Chen J, Sheng Y, Song Y, Chang M, Zhang X, Cui L, Meng D, Zhu H, Shi Z, Zou H. Multimorphology mesoporous silica nanoparticles for dye adsorption and multicolor luminescence applications. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3533–3545

[21]

Li H, Liu Y, Gao X, Fu C, Wang X. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors. ChemSusChem, 2015, 8(7): 1189–1196

[22]

Urakami H, Zhang K, Vilela F. Modification of conjugated microporous poly-benzothiadiazole for photosensitized singlet oxygen generation in water. Chemical Communications, 2013, 49(23): 2353–2355

[23]

Byun J, Landfester K, Zhang K A I. Conjugated polymer hydrogel photocatalysts with expandable photoactive sites in water. Chemistry of Materials, 2019, 31(9): 3381–3387

[24]

Ghosh S, Kouamé N A, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert P H, Remita H. Conducting polymer nanostructures for photocatalysis under visible light. Nature Materials, 2015, 14(5): 505–511

[25]

Yu L, Mao Y, Qu L. Simple voltammetric determination of rhodamine B by using the glassy carbon electrode in fruit juice and preserved fruit. Food Analytical Methods, 2013, 6(6): 1665–1670

[26]

Huang H B, Wang Y, Cai F Y, Jiao W B, Zhang N, Liu C, Cao H L, J. Photodegradation of rhodamine B over biomass-derived activated carbon supported CdS nanomaterials under visible irradiation. Frontiers in Chemistry, 2017, 5(123): 123

[27]

Mukthar Ali M, Arya Nair J S, Sandhya K Y. Role of reactive oxygen species in the visible light photocatalytic mineralization of rhodamine B dye by P25–carbon dot photocatalyst. Dyes and Pigments, 2019, 163: 274–284

[28]

Guo F, Wang K, Lu J, Chen J, Dong X, Xia D, Zhang A, Wang Q. Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals. Chemosphere, 2019, 218: 1071–1081

AI Summary AI Mindmap
PDF (1498KB)

Supplementary files

FCE-19036-OF-ZK_suppl_1

6129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/