Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates

Ximei Zhao, Matthias Rudolph, Abdullah M. Asiri, A. Stephen K. Hashmi

PDF(4806 KB)
PDF(4806 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 317-349. DOI: 10.1007/s11705-019-1874-4
REVIEW ARTICLE
REVIEW ARTICLE

Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates

Author information +
History +

Abstract

This review summarizes recent advances in the field of gold-catalyzed synthesis of pharmaceutically relevant aza-heterocycles via in situ generated α-imino gold carbene complexes as intermediates.

Graphical abstract

Keywords

gold / heterocycles / alkynes

Cite this article

Download citation ▾
Ximei Zhao, Matthias Rudolph, Abdullah M. Asiri, A. Stephen K. Hashmi. Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates. Front. Chem. Sci. Eng., 2020, 14(3): 317‒349 https://doi.org/10.1007/s11705-019-1874-4

References

[1]
Hashmi A S K, Frost T M, Bats J W. Highly selective gold-catalyzed arene synthesis. Journal of the American Chemical Society, 2000, 122(46): 11553–11554
CrossRef Google scholar
[2]
Hashmi A S K, Schwarz L, Choi J H, Frost T M. A new gold-catalyzed C‒C bond formation. Angewandte Chemie International Edition in English, 2000, 39(13): 2285–2288 doi:10.1002/1521-3773(20000703)39:13<2285::AID-ANIE2285>3.0.CO;2-F
[3]
Hann M M, Leach A R, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery. Journal of Chemical Information and Computer Sciences, 2001, 41(3): 856–864
CrossRef Google scholar
[4]
Fürstner A. Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chemical Society Reviews, 2009, 38(11): 3208–3221
CrossRef Google scholar
[5]
Pflästerer D, Hashmi A S K. Gold catalysis in total synthesis-recent achievements. Chemical Society Reviews, 2016, 45(5): 1331–1367
CrossRef Google scholar
[6]
Asiri A M, Hashmi A S K. Gold-catalysed reactions of diynes. Chemical Society Reviews, 2016, 45(16): 4471–4503
CrossRef Google scholar
[7]
Hashmi A S K, Frost T M, Bats J W. Gold catalysis: On the phenol synthesis. Organic Letters, 2001, 3(23): 3769–3771
CrossRef Google scholar
[8]
Reetz M T, Sommer K. Gold-catalyzed hydroarylation of alkynes. European Journal of Organic Chemistry, 2003, 2003(18): 3485–3496
CrossRef Google scholar
[9]
Dyker G, Muth E, Hashmi A S K, Ding L. Gold(III) chloride-catalyzed addition reactions of electron-rich arenes to methyl vinyl ketone. Advanced Synthesis & Catalysis, 2003, 345(11): 1247–1252
CrossRef Google scholar
[10]
Nevado C, Echavarren A M. Intramolecular hydroarylation of alkynes catalyzed by platinum or gold: Mechanism and endo selectivity. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(10): 3155–3164
CrossRef Google scholar
[11]
Buzas A, Gagosz F. Gold(I)-catalyzed formation of 4-alkylidene-1,3-dioxolan-2-ones from propargylic tert-butyl carbonates. Organic Letters, 2006, 8(3): 515–518
CrossRef Google scholar
[12]
Gagosz F. Unusual gold(I)-catalyzed isomerization of 3-hydroxylated 1,5-enynes: Highly substrate-dependent reaction manifolds. Organic Letters, 2005, 7(19): 4129–4132
CrossRef Google scholar
[13]
Revol G, McCallum T, Morin M, Gagosz F, Barriault L. Photoredox transformations with dimeric gold complexes. Angewandte Chemie International Edition in English, 2013, 52(50): 13342–13345
CrossRef Google scholar
[14]
Xie J, Zhang T, Chen F, Mehrkens N, Rominger F, Rudolph M, Hashmi A S K. Gold-catalyzed highly selective photoredox C (sp2)-H difluoroalkylation and perfluoroalkylation of hydrazones. Angewandte Chemie International Edition in English, 2016, 55(8): 2934–2938
CrossRef Google scholar
[15]
Huang L, Rudolph M, Rominger F, Hashmi A S K. Photosensitizer-free visible light-mediated gold-catalyzed 1,2-difunctionalization of alkynes. Angewandte Chemie International Edition in English, 2016, 55(15): 4808–4813
CrossRef Google scholar
[16]
Huang L, Rominger F, Rudolph M, Hashmi A S K. A general access to organogold(III) complexes by oxidative addition of diazonium salts. Chemical Communications, 2016, 52(38): 6435–6438
CrossRef Google scholar
[17]
Xie J, Sekine K, Witzel S, Kramer P, Rudolph M, Rominger F, Hashmi A S K. Light-induced gold-catalyzed hiyama arylation: A coupling access to biarylboronates. Angewandte Chemie International Edition in English, 2018, 57(51): 16648–16653
CrossRef Google scholar
[18]
Witzel S, Sekine K, Rudolph M, Hashmi A S K. New transmetalation reagents for the gold-catalyzed visible light-enabled C(sp or sp2)-C(sp2) cross-coupling with aryldiazonium salts in the absence of a photosensitizer. Chemical Communications, 2018, 54(98): 13802–13804
CrossRef Google scholar
[19]
Witzel S, Xie J, Rudolph M, Hashmi A S K. Photosensitizer-free, gold-catalyzed C‒C cross-coupling of boronic acids and diazonium salts enabled by visible light. Advanced Synthesis & Catalysis, 2017, 359(9): 1522–1528
CrossRef Google scholar
[20]
Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi A S K. A highly efficient gold-catalyzed photoredox α-C(sp3)-H alkynylation of tertiary aliphatic amines with sunlight. Angewandte Chemie International Edition in English, 2015, 54(20): 6046–6050
CrossRef Google scholar
[21]
Braun I, Asiri A M, Hashmi A S K. Gold catalysis 2.0. ACS Catalysis, 2013, 3(8): 1902–1907
CrossRef Google scholar
[22]
Greisch J F, Weis P, Brendle K, Kappes M M, Haler J R N, Far J, De Pauw E, Albers C, Bay S, Wurm T, et al. Detection of intermediates in dual gold catalysis using high-resolution ion mobility mass spectrometry. Organometallics, 2018, 37(9): 1493–1500
CrossRef Google scholar
[23]
Hashmi A S K, Braun I, Rudolph M, Rominger F. The role of gold acetylides as a selectivity trigger and the importance of gem-diaurated species in the gold-catalyzed hydroarylating-aromatization of arene-diynes. Organometallics, 2012, 31(2): 644–661
CrossRef Google scholar
[24]
Hashmi A S K. Dual gold catalysis. Accounts of Chemical Research, 2014, 47(3): 864–876
CrossRef Google scholar
[25]
Plajer A J, Ahrens L, Wieteck M, Lustosa D M, Babaahmadi R, Yates B, Ariafard A, Rudolph M, Rominger F, Hashmi A S K. Different selectivities in the insertions into C(sp2)-H bonds: Benzofulvenes by dual gold catalysis competition experiments. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(42): 10766–10772
CrossRef Google scholar
[26]
Liu L, Xu B, Mashuta M S, Hammond G B. Synthesis and structural characterization of stable organogold(I) compounds. Evidence for the mechanism of gold-catalyzed cyclizations. Journal of the American Chemical Society, 2008, 130(52): 17642–17643
CrossRef Google scholar
[27]
Weber D, Tarselli M A, Gagne M R. Mechanistic surprises in the gold(I)-catalyzed intramolecular hydroarylation of allenes. Angewandte Chemie International Edition in English, 2009, 48(31): 5733–5736
CrossRef Google scholar
[28]
Hashmi A S K, Schuster A M, Rominger F. Gold catalysis: Isolation of vinylgold complexes derived from alkynes. Angewandte Chemie International Edition in English, 2009, 48(44): 8247–8249
CrossRef Google scholar
[29]
Nunes Dos Santos Comprido L, Klein J, Knizia G, Kastner J, Hashmi A S K. On the accessible reaction channels of vinyl gold(I) species: π- and σ-pathways. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(45): 10901–10905
CrossRef Google scholar
[30]
Hashmi A S K. Isolable vinylgold intermediates—first access to phantoms of homogeneous gold catalysis. Gold Bulletin, 2009, 42(4): 275–279
CrossRef Google scholar
[31]
Fructos M R, Belderrain T R, de Frémont P, Scott N M, Nolan S P, Díaz-Requejo M M, Pérez P J. A Gold catalyst for carbene—transfer reactions from ethyl diazoacetate. Angewandte Chemie International Edition in English, 2005, 44(33): 5284–5288
CrossRef Google scholar
[32]
Fürstner A, Morency L. On the nature of the reactive intermediates in gold-catalyzed cycloisomerization reactions. Angewandte Chemie International Edition in English, 2008, 47(27): 5030–5033
CrossRef Google scholar
[33]
Johansson M J, Gorin D J, Staben S T, Toste F D. Gold(I)-catalyzed stereoselective olefin cyclopropanation. Journal of the American Chemical Society, 2005, 127(51): 18002–18003
CrossRef Google scholar
[34]
Xia Y, Dudnik A S, Gevorgyan V, Li Y. Mechanistic insights into the gold-catalyzed cycloisomerization of bromoallenyl ketones: Ligand-controlled regioselectivity. Journal of the American Chemical Society, 2008, 130(22): 6940–6941
CrossRef Google scholar
[35]
Klein J E, Knizia G, Nunes dos Santos Comprido L, Kästner J, Hashmi A S K C. (sp3)-H bond activation by vinylidene gold(I) complexes: A concerted asynchronous or stepwise process? Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(63): 16097–16103
CrossRef Google scholar
[36]
Nunes dos Santos Comprido L, Klein J E, Knizia G, Kastner J, Hashmi A S K. The stabilizing effects in gold carbene complexes. Angewandte Chemie International Edition in English, 2015, 54(35): 10336–10340
CrossRef Google scholar
[37]
Fürstner A, Hannen P. Carene terpenoids by gold-catalyzed cycloisomerization reactions. Chemical Communications, 2004, 22: 2546–2547
CrossRef Google scholar
[38]
Fürstner A, Hannen P. Platinum- and gold-catalyzed rearrangement reactions of propargyl acetates: Total syntheses of (-)-α-cubebene, (-)-cubebol, sesquicarene and related terpenes. Chemistry (Weinheim an der Bergstrasse, Germany), 2006, 12(11): 3006–3019
CrossRef Google scholar
[39]
Wang Y, Zheng Z, Zhang L. Intramolecular insertions into unactivated C(sp3)-H bonds by oxidatively generated β-diketone-α-gold carbenes: Synthesis of cyclopentanones. Journal of the American Chemical Society, 2015, 137(16): 5316–5319
CrossRef Google scholar
[40]
Li J, Ji K, Zheng R, Nelson J, Zhang L. Expanding the horizon of intermolecular trapping of in situ generated α-oxo gold carbenes: Efficient oxidative union of allylic sulfides and terminal alkynes via C‒C bond formation. Chemical Communications, 2014, 50(31): 4130–4133
CrossRef Google scholar
[41]
Shu C, Li L, Xiao X, Yu Y, Ping Y, Zhou J, Ye L. Flexible and practical synthesis of 3-oxyindoles through gold-catalyzed intermolecular oxidation of o-ethynylanilines. Chemical Communications, 2014, 50(63): 8689–8692
CrossRef Google scholar
[42]
Gorin D J, Davis N R, Toste F D. Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. Journal of the American Chemical Society, 2005, 127(32): 11260–11261
CrossRef Google scholar
[43]
Witham C A, Mauleón P, Shapiro N D, Sherry B D, Toste F D. Gold(I)-catalyzed oxidative rearrangements. Journal of the American Chemical Society, 2007, 129(18): 5838–5839
CrossRef Google scholar
[44]
Lu B, Luo Y, Liu L, Ye L, Wang Y, Zhang L. Umpolung reactivity of indole through gold catalysis. Angewandte Chemie International Edition in English, 2011, 50(36): 8358–8362
CrossRef Google scholar
[45]
Wetzel A, Gagosz F. Gold-catalyzed transformation of 2-alkynyl arylazides: Efficient eccess to the valuable pseudoindoxyl and indolyl frameworks. Angewandte Chemie International Edition in English, 2011, 123(32): 7492–7496
[46]
Li N, Wang T, Gong L, Zhang L. Gold-catalyzed multiple cascade reaction of 2-alkynylphenylazides with propargyl alcohols. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(9): 3585–3588
CrossRef Google scholar
[47]
Tokimizu Y, Oishi S, Fujii N, Ohno H. Gold-catalyzed cascade cyclization of (azido)ynamides: An efficient strategy for the construction of indoloquinolines. Organic Letters, 2014, 16(11): 3138–3141
CrossRef Google scholar
[48]
Shen C, Pan Y, Yu Y, Wang Z, He W, Li T, Ye L. Facile and efficient synthesis of [1,4]oxazino[3,2-b]indoles and 1H-pyrazino[2,3-b]indoles through gold-catalyzed cascade cyclization of (azido)ynamides. Journal of Organometallic Chemistry, 2015, 795: 63–67
CrossRef Google scholar
[49]
Pan Y, Chen G, Shen C, He W, Ye L. Synthesis of fused isoquinolines via gold-catalyzed tandem alkyne amination/intramolecular O–H insertion. Organic Chemistry Frontiers: An International Journal of Organic Chemistry/Royal Society of Chemistry, 2016, 3(4): 491–495
CrossRef Google scholar
[50]
Xiao Y, Zhang L. Synthesis of bicyclic imidazoles via [2+3] cycloaddition between nitriles and regioselectively generated α-Imino gold carbene intermediates. Organic Letters, 2012, 14(17): 4662–4665
CrossRef Google scholar
[51]
Yan Z Y, Xiao Y, Zhang L. Gold-catalyzed one-step construction of 2,3-dihydro-1H-Pyrrolizines with an electron-withdrawing group in the 5-position: A formal synthesis of 7-methoxymitosene. Angewandte Chemie International Edition in English, 2012, 51(34): 8624–8627
CrossRef Google scholar
[52]
Zhu S, Wu L, Huang X. Gold-catalyzed cyclization of 3-(2′-azidoaryl)-1-arylpropargyl carbonates or 3-aryl-1-(2′-azidoaryl)propargyl carbonates to produce quinolines. Journal of Organic Chemistry, 2013, 78(18): 9120–9126 doi:10.1021/jo401324k
[53]
Loy N S Y, Choi S, Kim S, Park C. The synthesis of pyrroles and oxazoles based on gold α-imino carbene complexes. Chemical Communications, 2016, 52(46): 7336–7339
CrossRef Google scholar
[54]
Prechter A, Henrion G, Faudot dit Bel P, Gagosz F. Gold-catalyzed synthesis of functionalized pyridines by using 2H-azirines as synthetic equivalents of alkenyl nitrenes. Angewandte Chemie International Edition in English, 2014, 53(19): 4959–4963
CrossRef Google scholar
[55]
Shu C, Wang Y H, Zhou B, Li X L, Ping Y F, Lu X, Ye L. Generation of α-Imino gold carbenes through gold-catalyzed intermolecular reaction of azides with ynamides. Journal of the American Chemical Society, 2015, 137(30): 9567–9570
CrossRef Google scholar
[56]
Davies P W, Cremonesi A, Dumitrescu L. Intermolecular and selective synthesis of 2,4,5-trisubstituted oxazoles by a gold-catalyzed formal [3+2] cycloaddition. Angewandte Chemie International Edition in English, 2011, 50(38): 8931–8935
CrossRef Google scholar
[57]
Reddy R J, Ball-Jones M P, Davies P W. Alkynyl thioethers in gold-catalyzed annulations to form oxazoles. Angewandte Chemie International Edition in English, 2017, 56(43): 13310–13313
CrossRef Google scholar
[58]
Li C, Zhang L. Gold-catalyzed nitrene transfer to activated alkynes: Formation of α, β-unsaturated amidines. Organic Letters, 2011, 13(7): 1738–1741
CrossRef Google scholar
[59]
González J, Santamaría J, Suárez-SobrinoÁ L, Ballesteros A. One-pot and regioselective gold-catalyzed synthesis of 2-imidazolyl-1-pyrazolylbenzenes from 1-propargyl-1H-benzotriazoles, alkynes and nitriles through α-imino gold(I) carbene complexes. Advanced Synthesis & Catalysis, 2016, 358(9): 1398–1403
CrossRef Google scholar
[60]
Zhu L, Yu Y, Mao Z, Huang X. Gold-catalyzed intermolecular nitrene transfer from 2H-azirines to ynamides: A direct approach to polysubstituted pyrroles. Organic Letters, 2015, 17(1): 30–33
CrossRef Google scholar
[61]
Zhou A, He Q, Shu C, Yu Y, Liu S, Zhao T, Zhang W, Lu X, Ye L. Atom-economic generation of gold carbenes: Gold-catalyzed formal [3+2] cycloaddition between ynamides and isoxazoles. Chemical Science (Cambridge), 2015, 6(2): 1265–1271
CrossRef Google scholar
[62]
Sahani R, Liu R S. Development of gold-catalyzed [4+1] and [2+2+1]/[4+2] annulations between propiolate derivatives and isoxazoles. Angewandte Chemie International Edition in English, 2017, 56(4): 1026–1030
CrossRef Google scholar
[63]
Kardile R D, Kale B S, Sharma P, Liu R. Gold-catalyzed [4+1]-annulation reactions between 1,4-diyn-3-ols and isoxazoles to construct a pyrrole core. Organic Letters, 2018, 20(13): 3806–3809
CrossRef Google scholar
[64]
Chen M, Sun N, Chen H, Liu Y. Dioxazoles, a new mild nitrene transfer reagent in gold catalysis: Highly efficient synthesis of functionalized oxazoles. Chemical Communications, 2016, 52(37): 6324–6327
CrossRef Google scholar
[65]
Zeng Z, Jin H, Xie J, Tian B, Rudolph M, Rominger F, Hashmi A S K. α-Imino gold carbenes from 1,2,4-oxadiazoles: Atom-economical access to fully substituted 4-aminoimidazoles. Organic Letters, 2017, 19(5): 1020–1023
CrossRef Google scholar
[66]
Xu W, Wang G, Sun N, Liu Y. Gold-catalyzed formal [3+2] cycloaddition of ynamides with 4,5-dihydro-1,2,4-oxadiazoles: Synthesis of functionalized 4-aminoimidazoles. Organic Letters, 2017, 19(12): 3307–3310
CrossRef Google scholar
[67]
Jin H, Huang L, Xie J, Rudolph M, Rominger F, Hashmi A S K. Gold-catalyzed C‒H annulation of anthranils with alkynes: A facile, flexible, and atom-economical synthesis of unprotected 7-acylindoles. Angewandte Chemie International Edition in English, 2016, 55(2): 794–797
CrossRef Google scholar
[68]
Zeng Z, Jin H, Sekine K, Rudolph M, Rominger F, Hashmi A S K. Gold-catalyzed regiospecific C‒H annulation of o-ethynylbiaryls with anthranils: p-Extension by ring-expansion en route to N-doped PAHs. Angewandte Chemie International Edition in English, 2018, 57(23): 6935–6939
CrossRef Google scholar
[69]
Tian X, Song L, Farshadfar K, Rudolph M, Rominger F, Oeser T, Hashmi A S K. Acyl migrations versus epoxidations in gold catalyis: Facile, switchable and atom-economic synthesis of acylindoles and quinoline derivatives. Angewandte Chemie International Edition in English, 2019, in press, DOI: 10.1002/ anie.201912334
[70]
Jin H, Tian B, Song X, Xie J, Rudolph M, Rominger F, Hashmi A S K. Gold-catalyzed synthesis of quinolines from propargyl silyl ethers and anthranils through the umpolung of a gold carbene carbon. Angewandte Chemie International Edition in English, 2016, 55(41): 12688–12692
CrossRef Google scholar
[71]
Tsai M H, Wang C, Kulandai Raj A S, Liu R. Gold-catalyzed annulations of N-aryl ynamides with benzisoxazoles to construct 6H-indolo[2,3-b]quinoline cores. Chemical Communications, 2018, 54(77): 10866–10869
CrossRef Google scholar
[72]
Patil M D, Liu R. Direct access to benzofuro[2,3-b]quinoline and 6H-chromeno[3,4-b] quinoline cores through gold-catalyzed annulation of anthranils with arenoxyethynes and aryl propargyl ethers. Organic & Biomolecular Chemistry, 2019, 17(18): 4452–4455
CrossRef Google scholar
[73]
Zeng Z, Jin H, Rudolph M, Rominger F, Hashmi A S K. Gold(III)-catalyzed site-selective and divergent synthesis of 2-aminopyrroles and quinoline-based polyazaheterocycles. Angewandte Chemie International Edition in English, 2018, 57(50): 16549–16553
CrossRef Google scholar
[74]
Hsieh H C, Tan K C, Kulandai Raj A S, Liu R S. Gold-catalyzed [4+1]-annulation reactions between anthranils and 4-methoxy-1,2-dienyl-5-ynes involving a 1,2-allene shift. Chemical Communications, 2019, 55(13): 1979–1982
CrossRef Google scholar
[75]
Jadhav P D, Lu X, Liu R. Gold-catalyzed [5+2]- and [5+1]-annulations between ynamides and 1,2-benzisoxazoles with ligand-controlled chemoselectivity. ACS Catalysis, 2018, 8(10): 9697–9701
CrossRef Google scholar
[76]
Xu W, Zhao J, Li X, Liu Y. Selective [5+1] and [5+2] cycloaddition of ynamides or propargyl esters with benzo[d]isoxazoles via gold catalysis. Journal of Organic Chemistry, 2018, 83(24): 15470–15485
CrossRef Google scholar
[77]
Yu Y, Chen G, Zhu L, Liao Y, Wu Y, Huang X. Gold-catalyzed bregioselective formal [3+2] cycloaddition of ynamides with pyrido[1,2-b]indazoles: Reaction development and mechanistic insights. Journal of Organic Chemistry, 2016, 81(18): 8142–8154
CrossRef Google scholar
[78]
Tian X, Song L, Rudolph M, Rominger F, Oeser T, Hashmi A S K. Sulfilimines as versatile nitrene transfer reagents: Facile access to diverse aza-heterocycles. Angewandte Chemie International Edition in English, 2019, 58(11): 3589–3593
CrossRef Google scholar
[79]
Tian X, Song L, Rudolph M, Wang Q, Song X, Rominger F, Hashmi A S K. N-pyridinyl sulfilimines as a source for α-imino gold carbenes: Access to 2-amino-substituted N-fused imidazoles. Organic Letters, 2019, 21(6): 1598–1601
CrossRef Google scholar
[80]
Tian X, Song L, Han C, Zhang C, Wu Y, Rudolph M, Rominger F, Hashmi A S K. Gold(III)-catalyzed formal [3+2] annulations of N-acyl sulfilimines with ynamides for the synthesis of 4-aminooxazoles. Organic Letters, 2019, 21(8): 2937–2940
CrossRef Google scholar

Acknowledgements

Zhao X is grateful to the China Scholarship Council for a Ph.D. fellowship.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(4806 KB)

Accesses

Citations

Detail

Sections
Recommended

/