Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes

Yujie Ban, Meng Zhao, Weishen Yang

PDF(7952 KB)
PDF(7952 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (2) : 188-215. DOI: 10.1007/s11705-019-1872-6
REVIEW ARTICLE
REVIEW ARTICLE

Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes

Author information +
History +

Abstract

A low-carbon economy calls for CO2 capture technologies. Membrane separations represent an energy-efficient and environment-friendly process compared with distillations and solvent absorptions. Metal-organic frameworks (MOFs), as a novel type of porous materials, are being generated at a rapid and growing pace, which provide more opportunities for high-efficiency CO2 capture. In this review, we illustrate a conceptional framework from material design and membrane separation application for CO2 capture, and emphasize two importance themes, namely (i) design and modification of CO2-philic MOF materials that targets secondary building units, pore structure, topology and hybridization and (ii) construction of crack-free membranes through chemical epitaxy growth of active building blocks, interfacial assembly, ultrathin two-dimensional nanosheet assembly and mixed-matrix integration strategies, which would give rise to the most promising membrane performances for CO2 capture, and be expected to overcome the bottleneck of permeability-selectivity limitations.

Graphical abstract

Keywords

CO2 capture / CO2-philic MOFs / crack-free membranes

Cite this article

Download citation ▾
Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes. Front. Chem. Sci. Eng., 2020, 14(2): 188‒215 https://doi.org/10.1007/s11705-019-1872-6

References

[1]
Schuur E A G, McGuire A D, Schädel C, Grosse G, Harden J W, Hayes D J, Hugelius G, Koven C D, Kuhry P, Lawrence D M, et al. Climate change and the permafrost carbon feedback. Nature, 2015, 520(7546): 171–179
CrossRef Google scholar
[2]
Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable & Sustainable Energy Reviews, 2018, 96: 502–525
CrossRef Google scholar
[3]
Trickett C A, Helal A, Al Maythalony B A, Yamani Z H, Cordova K E, Yaghi O M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials, 2017, 2(8): 17045
CrossRef Google scholar
[4]
Yu K, Mitch W A, Dai N. Nitrosamines and nitramines in amine-based carbon dioxide capture systems: Fundamentals, engineering implications, and knowledge gaps. Environmental Science & Technology, 2017, 51(20): 11522–11536
CrossRef Google scholar
[5]
Huang X, Zhang J, Chen X. [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chinese Science Bulletin, 2003, 48(15): 1531–1534
[6]
Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67
CrossRef Google scholar
[7]
Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3]n. Science, 1999, 283(5405): 1148–1150
CrossRef Google scholar
[8]
Mohamed E, Jaheon K, Nathaniel R, David V, Joseph W, Michael O K, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295(5554): 469–472
CrossRef Google scholar
[9]
Millange F, Serre C, Férey G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x. Chemical Communications, 2002, 8(8): 822–823
CrossRef Google scholar
[10]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
CrossRef Google scholar
[11]
Reinsch H, van der Veen M A, Gil B, Marszalek B, Verbiest B, de Vos D, Stock N. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chemistry of Materials, 2013, 25(1): 17–26
CrossRef Google scholar
[12]
Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef Google scholar
[13]
Fracaroli A M, Furukawa H, Suzuki M, Dodd M, Okajima S, Gándara F, Reimer J A, Yaghi O M. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. Journal of the American Chemical Society, 2014, 136(25): 8863–8866
CrossRef Google scholar
[14]
Ban Y, Li Z, Li Y, Peng Y, Jin H, Jiao W, Guo A, Wang P, Yang Q, Zhong C, Yang W. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angewandte Chemie International Edition, 2015, 54(51): 15483–15487
CrossRef Google scholar
[15]
Alezi D, Peedikakkal A M P, Weselinski L J, Guillerm V, Belmabkhout Y, Cairns A J, Chen Z, Wojtas L, Eddaoudi M. Quest for highly connected metal-organic framework platforms: Rare-earth polynuclear clusters versatility meets net topology needs. Journal of the American Chemical Society, 2015, 137(16): 5421–5430
CrossRef Google scholar
[16]
Zeeshan M, Nozari V, Yagci M B, Isik T, Unal U, Ortalan V, Keskin S, Uzun A. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity. Journal of the American Chemical Society, 2018, 140(32): 10113–10116
CrossRef Google scholar
[17]
Liu Y, Pan J H, Wang N, Steinbach F, Liu X, Caro J. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal–organic frameworks. Angewandte Chemie International Edition, 2015, 54(10): 3028–3032
CrossRef Google scholar
[18]
Kwon H T, Jeong H K. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. Journal of the American Chemical Society, 2013, 135(29): 10763–10768
CrossRef Google scholar
[19]
Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie International Edition, 2017, 56(33): 9757–9761
CrossRef Google scholar
[20]
Guo A, Ban Y, Yang K, Yang W. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation. Journal of Membrane Science, 2018, 562: 76–84
CrossRef Google scholar
[21]
Li Y, Zhang X, Lan J, Xu P, Sun J. Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorganic Chemistry, 2019, 58(20): 13917–13926
CrossRef Google scholar
[22]
Abdoli Y, Razavian M, Fatemi S. Bimetallic Ni–Co-based metal–organic framework: An open metal site adsorbent for enhancing CO2 capture. Applied Organometallic Chemistry, 2019, 33(8): e5004 doi:10.1002aoc.5004
[23]
Queen W L, Brown C M, Britt D K, Zajdel P, Hudson M R, Yaghi O M. Site-specific CO2 adsorption and zero thermal expansion in an anisotropic pore network. Journal of Physical Chemistry C, 2011, 115(50): 24915–24919
CrossRef Google scholar
[24]
Strauss I, Mundstock A, Hinrichs D, Himstedt R, Knebel A, Reinhardt C, Dorfs D, Caro J. The interaction of guest molecules with Co-MOF-74: A vis/NIR and raman approach. Angewandte Chemie International Edition, 2018, 57(25): 7434–7439
CrossRef Google scholar
[25]
Wong-Ng W, Levin I, Kaduk J A, Espinal L, Wu H. CO2 capture and positional disorder in Cu3(1,3,5-benzenetricarboxylate)2: An in situ laboratory X-ray powder diffraction study. Journal of Alloys and Compounds, 2016, 656: 200–205
CrossRef Google scholar
[26]
Wang Q M, Shen D, Bülow M, Lau M L, Deng S, Fitch F R, Lemcoff N O, Semanscin J. Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 2002, 55(2): 217–230
CrossRef Google scholar
[27]
Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871
CrossRef Google scholar
[28]
Park J, Kim H, Han S S, Jung Y. Tuning metal-organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. Journal of Physical Chemistry Letters, 2012, 3(7): 826–829
CrossRef Google scholar
[29]
Zhai Q G, Bu X, Mao C, Zhao X, Feng P. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. Journal of the American Chemical Society, 2016, 138(8): 2524–2527
CrossRef Google scholar
[30]
Liao P Q, Zang W X, Zhang J P, Chen X M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nature Communications, 2015, 6 : 8697
CrossRef Google scholar
[31]
Zhou D D, Chen P, Wang C, Wang S S, Du Y, Yan H, Ye Z M, He C T, Huang R K, Mo Z W, Huang N Y, Zhang J P. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nature Materials, 2019, 18: 994-998
CrossRef Google scholar
[32]
Zhang J P, Chen X M. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. Journal of the American Chemical Society, 2008, 130(18): 6010–6017
CrossRef Google scholar
[33]
Liao P Q, Chen H, Zhou D D, Liu S, He C, Rui Z, Ji H, Zhang J, Chen X M. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy & Environmental Science, 2015, 8(3): 1011-1016
CrossRef Google scholar
[34]
Liao P Q, Zhu A X, Zhang W X, Zhang J P, Chen X M. Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6 : 6350
CrossRef Google scholar
[35]
Zhang J P, Chen X M. Crystal engineering of binary metal imidazolate and triazolate frameworks. Chemical Communications, 2006, (16): 1689–1699
CrossRef Google scholar
[36]
Qi X L, Lin R B, Chen Q, Lin J B, Zhang J P, Chen X M. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chemical Science, 2011, 2(11): 2214–2218
CrossRef Google scholar
[37]
Huang X C, Lin Y Y, Zhang J P, Chen X M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559
CrossRef Google scholar
[38]
Wang X J, Li P Z, Chen Y, Zhang Q, Zhang H, Chan X X, Ganguly R, Li Y, Jiang J, Zhao Y. A rationally designed nitrogen-rich metal-organic framework and its exceptionally high CO2 and H2 uptake capability. Scientific Report, 2013, 3: 1149 doi:10.1038/srep01149
[39]
Lu Z, Meng F, Du L, Jiang W, Cao H, Duan J, Huang H, He H. A free tetrazolyl decorated metal-organic framework exhibiting high and selective CO2 adsorption. Inorganic Chemistry, 2018, 57(22): 14018–14022
CrossRef Google scholar
[40]
Qin J S, Du D Y, Li W L, Zhang J P, Li S L, Su Z M, Wang X L, Xu Q, Shao K Z, Lan Y Q. N-rich zeolite-like metal-organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chemical Science (Cambridge), 2012, 3(6): 2114–2118
CrossRef Google scholar
[41]
Li B, Zhang Z, Li Y, Yao K, Zhu Y, Deng Z, Yang F, Zhou X, Li G, Wu H, Nijem N, Chabal Y J, Lai Z, Han Y, Shi Z, Feng S, Li J. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angewandte Chemie International Edition, 2012, 51(6): 1412–1415
CrossRef Google scholar
[42]
Luebke R, Eubank J F, Cairns A J, Belmabkhout Y, Wojtas L, Eddaoudi M. The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chemical Communications, 2012, 48(10): 1455–1457
CrossRef Google scholar
[43]
An J, Fiorella R P, Geib S J, Rosi N L. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle. Journal of the American Chemical Society, 2009, 131(24): 8401–8403
CrossRef Google scholar
[44]
An J, Geib S J, Rosi N L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. Journal of the American Chemical Society, 2009, 131(24): 8376–8377
CrossRef Google scholar
[45]
An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. Journal of the American Chemical Society, 2010, 132(1): 38–39
CrossRef Google scholar
[46]
.Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 2009, 131(11): 3875–3877 doi.org/10.1021/ja809459e
[47]
Forgan R S, Smaldone R A, Gassensmith J J, Furukawa H, Cordes D B, Li Q, Wilmer C E, Botros Y Y, Snurr R Q, Slawin A M Z, Stoddart J F. Nanoporous carbohydrate metal–organic frameworks. Journal of the American Chemical Society, 2012, 134(1): 406–417
CrossRef Google scholar
[48]
Seoane B, Castellanos S, Dikhtiarenko A, Kapteijn F, Gascon J. Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 2016, 307: 147–187
CrossRef Google scholar
[49]
Ban Y, Peng Y, Zhang Y, Jin H, Jiao W, Guo A, Wang P, Li Y, Yang W. Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108. Microporous and Mesoporous Materials, 2016, 219: 190–198
CrossRef Google scholar
[50]
Li P Z, Wang X J, Tan R H D, Zhang Q, Zou R, Zhao Y. Rationally “clicked” post-modification of a highly stable metal-organic framework and its high improvement on CO2-selective capture. RSC Advances, 2013, 3(36): 15566–15570
CrossRef Google scholar
[51]
Chen C X, Qiu Q F, Cao C C, Pan M, Wang H P, Jiang J J, Wei Z W, Zhu K, Li G, Su C Y. Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53(83): 11403–11406
CrossRef Google scholar
[52]
Yan Y, Juríček M, Coudert F X, Vermeulen N A, Grunder S, Dailly A, Lewis W, Blake A J, Stoddart J F, Schröder M. Non-interpenetrated metal–organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: Synthesis, structure, and gas adsorption. Journal of the American Chemical Society, 2016, 138(10): 3371–3381
CrossRef Google scholar
[53]
Yu M H, Zhang P, Feng R, Yao Z Q, Yu Y C, Hu T L, Bu X H. Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(31): 26177–26183
CrossRef Google scholar
[54]
Zhai Q G, Bu X, Mao C, Zhao X, Daemen L, Cheng Y, Ramirez-Cuesta A J, Feng P. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7(1): 13645
CrossRef Google scholar
[55]
Zhai Q G, Bu X, Zhao X, Li D S, Feng P. Pore space partition in metal-organic frameworks. Accounts of Chemical Research, 2017, 50(2): 407–417
CrossRef Google scholar
[56]
Zhao X, Bu X, Zhai Q G, Tran H, Feng P. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. Journal of the American Chemical Society, 2015, 137(4): 1396–1399
CrossRef Google scholar
[57]
Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer R A. Flexible metal-organic frameworks. Chemical Society Reviews, 2014, 43(16): 6062–6096
CrossRef Google scholar
[58]
Bourrelly S, Llewellyn P L, Serre C, Millange F, Loiseau T, Férey G. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. Journal of the American Chemical Society, 2005, 127(39): 13519–13521
CrossRef Google scholar
[59]
Coudert F X, Mellot-Draznieks C, Fuchs A H, Boutin A. Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. Journal of the American Chemical Society, 2009, 131(32): 11329–11331
CrossRef Google scholar
[60]
Lan Y Q, Jiang H L, Li S L, Xu Q. Mesoporous metal-organic frameworks with size-tunable cages: Selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Advanced Materials, 2011, 23(43): 5015–5020
CrossRef Google scholar
[61]
Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, De Weireld G, Chang J S, Hong D Y, Kyu Hwang Y, Hwa Jhung S, Férey G. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir, 2008, 24(14): 7245–7250
CrossRef Google scholar
[62]
Zheng B, Yang Z, Bai J, Li Y, Li S. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chemical Communications, 2012, 48(56): 7025–7027
CrossRef Google scholar
[63]
Mao Y, Chen D, Hu P, Guo Y, Ying Y, Ying W, Peng X. Hierarchical mesoporous metal-organic frameworks for enhanced CO2 capture. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(43): 15127–15132
CrossRef Google scholar
[64]
Liu D, Zou D, Zhu H, Zhang J. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications. Small, 2018, 14(37): 1801454
CrossRef Google scholar
[65]
Anderson R, Rodgers J, Argueta E, Biong A, Gomez-Gualdron D A. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: From molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337
CrossRef Google scholar
[66]
Xue D X, Cairns A J, Belmabkhout Y, Wojtas L, Liu Y, Alkordi M H, Eddaoudi M. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. Journal of the American Chemical Society, 2013, 135(20): 7660–7667
CrossRef Google scholar
[67]
Luebke R, Belmabkhout Y, Weseliński Ł J, Cairns A J, Alkordi M, Norton G, Wojtas Ł, Adil K, Eddaoudi M. Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chemical Science (Cambridge), 2015, 6(7): 4095–4102
CrossRef Google scholar
[68]
Zhong R, Yu X, Meng W, Liu J, Zhi C, Zou R. Amine-grafted MIL-101(Cr) via double-solvent incorporation for synergistic enhancement of CO2 uptake and selectivity. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16493–16502
CrossRef Google scholar
[69]
Lin Y, Lin H, Wang H, Suo Y, Li B, Kong C, Chen L. Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites. Journal of Materials Chemistry A, 2014, 2(35): 14658‒14665
CrossRef Google scholar
[70]
Kumar R, Raut D, Ramamurty U, Rao C N R. Remarkable improvement in the mechanical properties and CO2 uptake of MOFs brought about by covalent linking to graphene. Angewandte Chemie International Edition, 2016, 55(27): 7857–7861
CrossRef Google scholar
[71]
Ban Y, Li Y, Peng Y, Jin H, Jiao W, Liu X, Yang W. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane separation properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(36): 11402–11409
CrossRef Google scholar
[72]
Cheng Y, Ying Y, Zhai L, Liu G, Dong J, Wang Y, Christopher M P, Long S, Wang Y, Zhao D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. Journal of Membrane Science, 2019, 573: 97–106
CrossRef Google scholar
[73]
Li F, Wang D, Xing Q J, Zhou G, Liu S S, Li Y, Zheng L L, Ye P, Zou J P. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2019, 243: 621–628
CrossRef Google scholar
[74]
Peng Y, Zhao M, Chen B, Zhang Z, Huang Y, Dai F, Lai Z, Cui X, Tan C, Zhang H. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials. Advanced Materials, 2018, 30(3): 1705454
CrossRef Google scholar
[75]
Zhang F M, Sheng J L, Yang Z D, Sun X J, Tang H L, Lu M, Dong H, Shen F C, Liu J, Lan Y Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angewandte Chemie International Edition, 2018, 57(37): 12106–12110
CrossRef Google scholar
[76]
Liao P Q, Huang N Y, Zhang W X, Zhang J P, Chen X M. Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356(6343): 1193–1196
CrossRef Google scholar
[77]
He C T, Ye Z M, Xu Y T, Zhou D D, Zhou H L, Chen D, Zhang J P, Chen X M. Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science (Cambridge), 2017, 8(11): 7560–7565
CrossRef Google scholar
[78]
Altintas C, Keskin S. Molecular simulations of MOF membranes and performance predictions of MOF/polymer mixed matrix membranes for CO2/CH4 separations. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2739–2750
CrossRef Google scholar
[79]
Qiao Z, Peng C, Zhou J, Jiang J. High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15904–15912
CrossRef Google scholar
[80]
Watanabe T, Sholl D S. Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir, 2012, 28(40): 14114–14128
CrossRef Google scholar
[81]
Chung Y G, Gómez-Gualdrón D A, Li P, Leperi K T, Deria P, Zhang H, Vermeulen N A, Stoddart J F, You F, Hupp J T, Farha O K, Snurr R Q. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Science Advances, 2016, 2(10): e1600909
CrossRef Google scholar
[82]
Guo H, Zhu G, Hewitt I J, Qiu S. “Twin copper source” growth of metal-organic gramework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647
CrossRef Google scholar
[83]
Kang Z, Xue M, Fan L, Huang L, Guo L, Wei G, Chen B, Qiu S. Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane. Energy & Environmental Science, 2014, 7(12): 4053–4060
CrossRef Google scholar
[84]
Hu Y, Dong X, Nan J, Jin W, Ren X, Xu N, Lee Y M. Metal-organic framework membranes fabricated via reactive seeding. Chemical Communications, 2011, 47(2): 737–739
CrossRef Google scholar
[85]
Zhou S, Wei Y, Zhuang L, Ding L X, Wang H. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(5): 1948–1951
CrossRef Google scholar
[86]
Huang A, Bux H, Steinbach F, Caro J. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angewandte Chemie International Edition, 2010, 49(29): 4958–4961
CrossRef Google scholar
[87]
Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society, 2010, 132(44): 15562–15564
CrossRef Google scholar
[88]
McCarthy M C, Varela-Guerrero V, Barnett G V, Jeong H K. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641
CrossRef Google scholar
[89]
Bétard A, Bux H, Henke S, Zacher D, Caro J, Fischer R A. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous and Mesoporous Materials, 2012, 150: 76–82
CrossRef Google scholar
[90]
Fan S, Wu S, Liu J, Liu D. Fabrication of MIL-120 membranes supported by α-Al2O3 hollow ceramic fibers for H2 separation. RSC Advances, 2015, 5(67): 54757–54761
CrossRef Google scholar
[91]
Bohrman J A, Carreon M A. Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. Chemical Communications, 2012, 48(42): 5130–5132
CrossRef Google scholar
[92]
Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y S, Caro J. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chemistry of Materials, 2011, 23(8): 2262–2269
CrossRef Google scholar
[93]
Dong X, Lin Y S. Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chemical Communications, 2013, 49(12): 1196–1198
CrossRef Google scholar
[94]
Li Y S, Bux H, Feldhoff A, Li G L, Yang W S, Caro J. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Advanced Materials, 2010, 22(30): 3322–3326
CrossRef Google scholar
[95]
Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1): 36–40
CrossRef Google scholar
[96]
Mao Y, Cao W, Li J, Liu Y, Ying Y, Sun L, Peng X. Enhanced gas separation through well-intergrown MOF membranes: Seed morphology and crystal growth effects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11711–11716
CrossRef Google scholar
[97]
Li Y, Liu H, Wang H, Qiu J, Zhang X. GO-guided direct growth of highly oriented metal organic framework nanosheet membranes for H2/CO2 separation. Chemical Science (Cambridge), 2018, 9(17): 4132–4141
CrossRef Google scholar
[98]
Sun Y, Liu Y, Caro J, Guo X, Song C, Liu Y. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity. Angewandte Chemie International Edition, 2018, 57(49): 16088–16093
CrossRef Google scholar
[99]
Kwon H T, Jeong H K, Lee A S, An H S, Lee J S. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. Journal of the American Chemical Society, 2015, 137(38): 12304–12311
CrossRef Google scholar
[100]
Feng X, Ding X, Jiang D. Covalent organic frameworks. Chemical Society Reviews, 2012, 41(18): 6010–6022
CrossRef Google scholar
[101]
Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. Journal of the American Chemical Society, 2016, 138(24): 7673–7680
CrossRef Google scholar
[102]
Ma X, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Mkhoyan K A, Tsapatsis M. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361(6406): 1008–1011
CrossRef Google scholar
[103]
Li Y, Yang W. Microwave synthesis of zeolite membranes: A review. Journal of Membrane Science, 2008, 316(1): 3–17
CrossRef Google scholar
[104]
Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
CrossRef Google scholar
[105]
Kwona H T, Jeong H K. Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes. Chemical Engineering Science, 2015, 124: 20–26
CrossRef Google scholar
[106]
Yao J, Dong D, Li D, He L, Xu G, Wang H. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chemical Communications, 2011, 47(9): 2559–2561
CrossRef Google scholar
[107]
Kwon H T, Jeong H K. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chemical Communications, 2013, 49(37): 3854–3856 doi:10.1039/C3CC41039K
[108]
Lee M J, Kwon H T, Jeong H K. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angewandte Chemie International Edition, 2018, 57(1): 156–161
CrossRef Google scholar
[109]
Barankova E, Tan X, Villalobos L F, Litwiller E, Peinemann K V. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane. Angewandte Chemie International Edition, 2017, 56(11): 2965–2968
CrossRef Google scholar
[110]
Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J R, Koros W J, Jones C W, Nair S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75
CrossRef Google scholar
[111]
Eum K, Rownaghi A, Choi D, Bhave R R, Jones C W, Nair S. Fluidic processing of high-performance ZIF-8 membranes on polymeric hollow fibers: Mechanistic insights and microstructure control. Advanced Functional Materials, 2016, 26(28): 5011–5018
CrossRef Google scholar
[112]
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
CrossRef Google scholar
[113]
Hao L, Li P, Yang T, Chung T S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231
CrossRef Google scholar
[114]
Tzialla O, Veziri C, Papatryfon X, Beltsios K G, Labropoulos A, Iliev B, Adamova G, Schubert T J S, Kroon M C, Francisco M, Zubeir L F, Romanos G E, Karanikolos G N. Zeolite imidazolate framework–ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440
CrossRef Google scholar
[115]
Bara J E, Hatakeyama E S, Gin D L, Noble R D. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polymers for Advanced Technologies, 2008, 19(10): 1415–1420
CrossRef Google scholar
[116]
Aroon M A, Ismail A F, Matsuura T, Montazer-Rahmati M M. Performance studies of mixed matrix membranes for gas separation: A review. Separation and Purification Technology, 2010, 75(3): 229–242
CrossRef Google scholar
[117]
Seoane B, Coronas J, Gascon I, Benavides M E, Karvan O, Caro J, Kapteijn F, Gascon J. Metal–organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture. Chemical Society Reviews, 2015, 44(8): 2421–2454
CrossRef Google scholar
[118]
Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés i Xamena F X, Gascon J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2014, 14(1): 48–55
CrossRef Google scholar
[119]
Fan H, Shi Q, Yan H, Ji S, Dong J, Zhang G. Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582
CrossRef Google scholar
[120]
Venna S R, Lartey M, Li T, Spore A, Kumar S, Nulwala H B, Luebke D R, Rosi N L, Albenze E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015, 3(9): 5014–5022
CrossRef Google scholar
[121]
Anjum M W, Vermoortele F, Khan A L, Bueken B, De Vos D E, Vankelecom I F J. Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(45): 25193–25201
CrossRef Google scholar
[122]
Nik O G, Chen X Y, Kaliaguine S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2012, 413: 48–61
CrossRef Google scholar
[123]
Yang T, Xiao Y, Chung T S. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011, 4(10): 4171–4180
CrossRef Google scholar
[124]
Zornoza B, Martinez-Joaristi A, Serra-Crespo P, Tellez C, Coronas J, Gascon J, Kapteijn F. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524
CrossRef Google scholar
[125]
Sánchez-Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, Téllez C, Coronas J. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53
CrossRef Google scholar
[126]
Sabetghadam A, Seoane B, Keskin D, Duim N, Rodenas T, Shahid S, Sorribas S, Guillouzer C L, Clet G, Tellez C, Daturi M, Coronas J, Kapteijn F, Gascon J. Metal organic framework crystals in mixed-matrix membranes: Impact of the filler morphology on the gas separation performance. Advanced Functional Materials, 2016, 26(18): 3154–3163
CrossRef Google scholar
[127]
Zhang Y, Feng X, Li H, Chen Y, Zhao J, Wang S, Wang L, Wang B. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie International Edition, 2015, 127(14): 4333–4337
CrossRef Google scholar
[128]
Bae T H, Lee J S, Qiu W, Koros W J, Jones C W, Nair S. A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angewandte Chemie International Edition, 2010, 49(51): 9863–9866
CrossRef Google scholar
[129]
Ordoñez M J C, Balkus K J Jr, Ferraris J P, Musselman I H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1): 28–37
CrossRef Google scholar
[130]
Yang T, Chung T S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. International Journal of Hydrogen Energy, 2013, 38(1): 229–239
CrossRef Google scholar
[131]
Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165
CrossRef Google scholar
[132]
Liu X, Jin H, Li Y, Bux H, Hu Z, Ban Y, Yang W. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation. Journal of Membrane Science, 2013, 428: 498–506
CrossRef Google scholar
[133]
Kornienko N, Zhao Y, Kley C S, Zhu C, Kim D, Lin S, Chang C J, Yaghi O M, Yang P. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. Journal of the American Chemical Society, 2015, 137(44): 14129–14135
CrossRef Google scholar

Acknowledgements

W.Y. thanks the financial support of the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB17020400) and the National Natural Science Foundation of China (Grant No. 21721004). Y.B. thanks the financial support of the National Natural Science Foundation of China (Grant No. 21706249) and DICP (Grant No. DICP ZZBS201711).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(7952 KB)

Accesses

Citations

Detail

Sections
Recommended

/