Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time

Yifei Wang , Shouying Huang , Xinsheng Teng , Hongyu Wang , Jian Wang , Qiao Zhao , Yue Wang , Xinbin Ma

Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (5) : 802 -812.

PDF (2509KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (5) : 802 -812. DOI: 10.1007/s11705-019-1866-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time

Author information +
History +
PDF (2509KB)

Abstract

The Fischer–Tropsch synthesis (FTS) continues to be an attractive alternative for producing a broad range of fuels and chemicals through the conversion of syngas (H2 and CO), which can be derived from various sources, such as coal, natural gas, and biomass. Among iron carbides, Fe2C, as an active phase, has barely been studied due to its thermodynamic instability. Here, we fabricated a series of Fe2C embedded in hollow carbon sphere (HCS) catalysts. By varying the crystallization time, the shell thickness of the HCS was manipulated, which significantly influenced the catalytic performance in the FTS. To investigate the relationship between the geometric structure of the HCS and the physic-chemical properties of Fe species, transmission electron microscopy, X-ray diffraction, N2 physical adsorption, X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction, Raman spectroscopy, and Mössbauer spectroscopy techniques were employed to characterize the catalysts before and after the reaction. Evidently, a suitable thickness of the carbon layer was beneficial for enhancing the catalytic activity in the FTS due to its high porosity, appropriate electronic environment, and relatively high Fe2C content.

Graphical abstract

Keywords

Fischer–Tropsch synthesis / Fe-based catalyst / Fe2C / hollow carbon sphere / crystallization time

Cite this article

Download citation ▾
Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time. Front. Chem. Sci. Eng., 2020, 14(5): 802-812 DOI:10.1007/s11705-019-1866-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dry M E. The Fischer-Tropsch process: 1950–2000. Catalysis Today, 2002, 71(3-4): 227–241

[2]

Galvis H M T, de Jong K P D. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catalysis, 2013, 3(9): 2130–2149

[3]

Ail S S, Dasappa S. Biomass to liquid transportation fuel via Fischer-Tropsch synthesis: Technology review and current scenario. Renewable & Sustainable Energy Reviews, 2016, 58: 267–286

[4]

Niu L W, Liu X W, Liu X, Lv Z G, Zhang C H, Wen X D, Yang Y, Li Y W, Xu J. In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 Catalysts. ChemCatChem, 2017, 9(9): 1691–1700

[5]

Yong Y, Huang S H, Wang H Y, Wang H Y, Wang Y F, Wang J, Lv J, Li Z H, Ma X B. Monodisperse nano Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins promoter and size effects. ChemCatChem, 2017, 9(3): 3144–3152

[6]

Ma W P, Jacobs G, Sparks D E, Klettlinger J L S, Yen C H, Davis B H. Fischer-Tropsch synthesis and water gas shift kinetics for a precipitated iron catalyst. Catalysis Today, 2016, 275: 49–58

[7]

de Smit E, Weckhuysen B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 2008, 37(12): 2758–2781

[8]

Le Caer G, Dubois J M, Pijolat M, Perrichon V, Bussiere P. Characterization by Möessbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis. Journal of Physical Chemistry, 1982, 86(24): 4799–4808

[9]

Zhao S, Liu X W, Huo C F, Li Y W, Wang J G, Jiao H J. Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies. Catalysis Structure & Reactivity, 2015, 1(1): 44–60

[10]

de Smit E, Cinquini F, Beale A M, Safonova O V, van Beek W, Sautet P, Weckhuysen B M. Stability and reactivity of iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling µC. Journal of the American Chemical Society, 2010, 132(42): 14928–14941

[11]

Manes M, Damick A D, Mentser M, Cohn E M, Hofer L J E. Hexagonal iron carbide as an intermediate in the carbiding of iron Fischer-Tropsch catalysts 1,2. Journal of the American Chemical Society, 1952, 74(24): 6207–6209

[12]

Huo C F, Li W Y, Wang J, Jiao H. Insight into CH4 formation in iron-catalyzed Fischer-Tropsch synthesis. Journal of the American Chemical Society, 2009, 131(41): 14713–14721

[13]

Xu K, Cheng Y, Lin J, Wang H, Xie S H, Pei Y, Yan S R, Qiao M H, Li Z H, Zong B N. Nanocrystalline iron-boron catalysts for low-temperature CO hydrogenation: Selective liquid fuel production and structure-activity correlation. Journal of Catalysis, 2016, 339: 102–110

[14]

Mogorosi R P, Fischer N, Claeys M, Steen E V. Strong-metal-support interaction by molecular design: Fe-silicate interactions in Fischer-Tropsch catalysts. Journal of Catalysis, 2012, 289: 140–150

[15]

Xu K, Sun B, Lin J, Wen W, Pei Y, Yan S R, Qiao M H, Zhang X X, Zong B N. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst. Nature Communications, 2014, 5(1): 57–83

[16]

Wang P, Chen W, Chiang F K, Dugulan A I, Song Y, Pestman R, Zhang K, Yao J, Feng B, Miao P, Xu W, Hensen E J.Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalyst. Science Advances, 2018, 4(10): 2947–2953

[17]

Cheng Y, Lin J, Xu K, Wang H, Yao X Y, Pei Y, Yan S R, Qiao M H, Zong B N. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide-supported iron catalysts. ACS Catalysis, 2016, 6(1): 389–399

[18]

Torres Galvis H M, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335(6): 835–838

[19]

Zhou X P, Ji J, Wang D, Duan X, Qiao G, Chen D, Zhou X. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins. Chemical Communications, 2015, 51(42): 8853–8856

[20]

Barrault J, Forquy C, Menezo J C, Maurel R. Selective hydrocondensation of CO to light olefins with alumina-supported iron catalysts. Reaction Kinetics and Catalysis Letters, 1980, 15(2): 153–158

[21]

Chen Q, Liu G, Ding S, Chanmiya Sheikh M, Long D, Yoneyama Y, Tsubaki N. Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chemical Engineering Journal, 2018, 334: 714–724

[22]

Jiang F, Zhang M, Liu B, Xu Y B, Liu X H. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-Tropsch synthesis: Understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation. Catalysis Science & Technology, 2017, 7(5): 1245–1265

[23]

Lu J Z, Yang L J, Xu B L, Wu Q, Zhang D, Yuan S J, Zhai Y, Wang X Z, Fan Y N, Hu Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins. ACS Catalysis, 2014, 4(2): 613–621

[24]

Santos V P, Wezendonk T A, Jaén J J, Dugulan A, Nasalevich M, Islam H, Chojecki A, Sartipi S, Sun X, Hakeem A, . Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 2015, 6(1): 64–51

[25]

Teng X S, Huang S Y, Wang J, Wang H Y, Zhao Q, Yuan Y, Ma X B. Fabrication of Fe2C embedded in hollow carbon spheres: A high-performance and stable catalyst for Fischer-Tropsch synthesis. ChemCatChem, 2018, 10(17): 3883–3891

[26]

Yao D W, Wang Y, Li Y, Zhao Y J, Lv J, Ma X B. A high-performance nanoreactor for carbon-oxygen bonds hydrogenation reactions achieved by the morphology of nanotube-assembled hollow sphere. ACS Catalysis, 2017, 8(2): 1218–1226

[27]

Zhang Z P, Dai W W, Xu X C, Zhang J, Shi B F, Xu J, Tu W F, Han Y F. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic FeMnOx/SiO2 catalysts. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(10): 4451–4464

[28]

Tao Z C, Yang Y, Zhang C H, Li T Z, Ding M Y, Xiang H W, Li Y W. Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry, 2007, 16(3): 278–285

[29]

Oschatz M, van Deelen T W, Weber J L, Lamme W S, Wang G, Goderis B, Verkinderen O, Dugulan A I, de Jong K P. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas. Catalysis Science & Technology, 2016, 6(24): 8464–8473

[30]

Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review. B, 2000, 61(20): 14095–14107

[31]

Yan B, Huang S Y, Wang S P, Ma X B. Catalytic oxidative carbonylation over Cu2O nanoclusters supported on carbon materials: The role of the carbon support. ChemCatChem, 2015, 6(9): 2671–2679

[32]

Li T Z, Wang H L, Yang Y, Xiang H W, Li Y W. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis. Journal of Energy Chemistry, 2013, 22(4): 624–632

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2509KB)

2716

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/