Please wait a minute...

Frontiers of Chemical Science and Engineering

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (6) : 1112-1121
Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid
Xin Wang, Wei Cui, Bin Li, Xiaojie Zhang, Yongxin Zhang, Yaodong Huang()
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
Download: PDF(5846 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The gelating properties and thermotropic behaviors of stoichiometric mixtures of aromatic amides 1, 2, and the aromatic Schiff base 3 with tartaric acid (TA) were investigated. Among the three gelators, 2-TA exhibited superior gelating ability. Mixture 2-TA exhibits a smectic B phase and an unidentified smectic mesophase during both heating and cooling runs. The results of Fourier transform infrared spectroscopy and X-ray diffraction revealed the existence of hydrogen bonding and p-p interactions in 2-TA systems, which are likely to be the dominant driving forces for the supramolecular self-assembly. Additionally, it was established that all of the studied gel self-assemblies and mesophases possess a lamellar structure. The anion response ability of the tetrahydrofuran gel of 2-TA was evaluated and it was found that it was responsive to the stimuli of F, Cl, Br, I, AcO.

Keywords supramolecular self-assembly      organogel      liquid crystal      tartaric acid      hydrogen bond     
Corresponding Author(s): Yaodong Huang   
Just Accepted Date: 29 May 2020   Online First Date: 30 July 2020    Issue Date: 11 September 2020
 Cite this article:   
Xin Wang,Wei Cui,Bin Li, et al. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1112-1121.
E-mail this article
E-mail Alert
Articles by authors
Xin Wang
Wei Cui
Bin Li
Xiaojie Zhang
Yongxin Zhang
Yaodong Huang
Fig.1  Scheme 1 Chemical structures of 1, 2 and 3.
Solvent 1-TA 2-TA 3-TA
Methanol SP 23.7 PG
Ethanol SP 43.5 38.2
2-Propanol S 32.7 PG
n-Hexanol 53.4 23.7 PG
CH2Cl2 S 52.8 PG
Chloroform S 16.2 (t) S
Carbon tetrachloride PG 52.8 SP
Hexane SP Ins PG
Cyclohexane 26.7 Ins PG
Diethyl ether Ins Ins PG
Petroleum ether Ins Ins SP
Dioxane PG 29.7 PG
Tetrahydrofuran S 11.7 58.2
Acetone PG 19.2 16.3
Ethyl acetate SP 1.5 (t) 33.0
Benzene S 20.7 (t) S
Toluene S 38.9 S
Xylene S 29.7 S
Chlorobenzene S 8.8 (t) S
Pyridine 107.6 52.8 S
Acetonitrile PG 23.7 PG
Triethylamine PG Ins S
N,N-Dimethyl formamide 105.5 14.6 58.2
Tab.1  Gelation properties of the stoichiometric mixtures of 1-TA, 2-TA and 3-TAa)
Fig.2  Plots of Tgel vs. the concentration of 2-TA in a two-component gel system in ethyl acetate (red) and acetone (blue).
Fig.3  SEM images of xerogels obtained from the gels of (a) 2-TA in ethyl acetate, (b) 2-TA in chloroform, (c) 1-TA in n-hexanol, and (d) 3-TA in tetrahydrofuran.
Fig.4  XRD patterns of the xerogels from (a) 1-TA in hexanol, (b) 2-TA in ethyl acetate, (c) 2-TA in chloroform, and (d) 3-TA in tetrahydrofuran.
Fig.5  FT-IR spectra of compound 2 and the xerogel of 2-TA in chloroform.
2 Powder/cm–1 2-TA gel/cm–1 TA Powder/cm–1
u(N–H) 3343 3336
u(C=O) 1681 1692 1730?1720
u(–OH) 3238 3640?3610
u(C=N) 1594 1591
uas(CH2) 2914 2921
us(CH2) 2847 2853
d(N–H) 1524 1507
Tab.2  Typical absorption bands of 2 and 2-TA at three different states
Fig.6  Scheme 2 Proposed hydrogen bonding network of the 2-TA two-component system.
Fig.7  The anion response test of the tetrahydrofuran gel of 2-TA.
Fig.8  Polarized optical micrograph of 2-TA at (a) 181 °C, (b) 165 °C, (c) 85 °C upon cooling from isotropic liquid and (d) 171 °C, (e) 178 °C, (f) 182 °C upon the second heating run.
Fig.9  DSC first cooling run and second heating run of 2-TA.
Procedure Transition Temperature/°C DH/(kcal?mol–1)
Heating Cr→ Sm X 106.50 6.5
Sm X→Sm B 154.45 2.0
Sm B→ I 177.35 3.8
Cooling I→ Sm B 168.87 –3.9
Sm B→Sm X 147.71 –1.9
Sm X→ Cr 90.68 –11.8
Tab.3  Phase transition temperatures and corresponding enthalpy values of 2-TAa)
Fig.10  The variable-temperature powder X-ray diffraction of 2-TA at 130 and 154 °C.
1 S Bhattacharjee, S Bhattacharya. Orotic acid as a useful supramolecular synthon for the fabrication of an OPV based hydrogel: stoichiometry dependent injectable behavior. Chemical Communications, 2015, 51(31): 6765–6768
2 J Raeburn, D J Adams. Multicomponent low molecular weight gelators. Chemical Communications, 2015, 51(25): 5170–5180
3 L E Buerkle, S J Rowan. Supramolecular gels formed from multi-component low molecular weight species. Chemical Society Reviews, 2012, 41(18): 6089–6102
4 M H Liu, G H Quyang, D Niu, Y Sang. Supramolecular gelaton: Towards the design of molecular gels. Organic Chemistry Frontiers : An International Journal of Organic Chemistry / Royal Society of Chemistry, 2018, 5(19): 2885–2900
5 T Tu, H B Zhu, W W Fang, Y Zhang, J J Wu, C Liu. Advance between supramolecular gels and catalysis. Chemistry, an Asian Journal, 2018, 13(7): 712–729
6 I Verma, N Rajeev, G Mohiuddin, S K Pal. Ordering transitions in liquid crystals triggered by bioactive cyclic amphiphiles: Potential application in label-free detection of amyloidogenic peptides. Journal of Physical Chemistry C, 2019, 123(11): 6526–6536
7 T Kato, N Mizoshita, K Kishimoto. Functional liquid-crystalline assemblies: Self-organized soft materials. Angewandte Chemie International Edition, 2006, 45(1): 38–68
8 L Y Wang, S X Liu, H M Li, Y D Huang. Preparation and properties of the two-component hydrogels based on pyrazine dicarboxylic acid and melamine. Chemical Journal of Chinese Universities, 2017, 38(5): 806–813
9 R D Mahapatra, J Dey. Instant gels from mixtures of amines and anhydrides at room temperature. Colloids and Surfaces. B, Biointerfaces, 2016, 147: 422–433
10 K Hamaguchi, D Kuo, M M Liu, T Sakamoto, M Yoshio, H Katayama, T Kato. Nanostructured virus filtration membranes based on two component columnar liquid crystals. ACS Macro Letters, 2019, 8(1): 24–30
11 T Mahalingam, T Venkatachalam, R Jayaprakasam, V N Vijayakumar. Structural and thermo-optic studies on linear double hydrogen bonded ferroelectric liquid crystal homologous series. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2016, 641(1): 10–24
12 J H Yang, L A Christianson, S H Gellman. Comparison of an HXH three-center hydrogen bond with alternative two-center hydrogen bonds in a model system. Organic Letters, 1999, 1(1): 11–13
13 B Deebika, S Balamurugan, P Kannan. Liquid crystalline H-bonded polymers influenced by chiral and achiral spacers. Journal of Polymer Research, 2012, 19(7): 9920–684
14 D Yamaguchi, H Eimura, M Yoshio, T Kato. Redox-active supramolecular fibers of a nitronyl nitroxide-based gelator. Chemistry Letters, 2016, 45(8): 863–865
15 Y Takemoto, Y Uchida, S Shimono, J Yamauchi, R Tamura. Preparation and magnetic properties of nitroxide radical liquid crystalline physical gels. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2017, 647(1): 279–289
16 Y Huang, X Zhang, W Cui, X Wang, B Li, Y Zhang, J Yang. Novel liquid crystalline organogelators based on terephthalic acid and terephthalaldehyde derivatives: Properties and promotion through the formation of halogen bonding. New Journal of Chemistry, 2020, 44(2): 614–625
17 C Y Bao, R Lu, M Jin, P C Xue, C H Tan, G F Liu, Y Zhao. Zhao Y Y. L-Tartaric acid assisted binary organogel system: Strongly enhanced fluorescence induced by supramolecular assembly. Organic & Biomolecular Chemistry, 2005, 3(14): 2508–2512
18 Y D Huang, Y Q Yuan, W Tu, Y Zhang, M J Zhang, H M Qu. Preparation of efficient organogelators based on pyrazine-2,5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230
19 Y Shishido, H Anetai, T Takedam, N Hoshino, S Noro, T Nakamura, T Akutagawa. Molecular assembly and ferroelectric response of benzenecarboxamides bearing multiple ‒CONHC14H29 chains. Journal of Physical Chemistry C, 2014, 118(36): 21204–21214
20 G L Feng, H H Chen, J H Cai, J W Wen, X B Liu. L-Phenylalanine based low-molecular-weight efficient organogelators and their selective gelation of oil from oil/water mixtures. Soft Materials, 2014, 12(4): 403–410
21 M Yamanaka, R Aoyama. Construction of two- or three-component low molecular weight gel systems. Bulletin of the Chemical Society of Japan, 2010, 83(7): 1127–1131
22 P C Xue, Y Zhang, J H Jia, D F Xu, X F Zhang, X L Liu, H P Zhou, P Zhang, R Lu, M Takafuji, H Ihara. Solvent-dependent photophysical and anion responsive properties of one glutamide gelator. Soft Matter, 2011, 7(18): 8296–8304
23 X H Cao, N Zhao, H T Lv, A P Gao, A P Shi, Y Q Wu. 4-Nitrobenzene thiourea self-assembly system and its transformation upon addition of Hg2+ ion: Applications as sensor to fluoride ion. Sensors and Actuators. B, Chemical, 2018, 266: 637–644
24 Y D Huang, S X Liu, Z F Xie, Z P Sun, W Chai, W Jiang. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response. Frontiers of Chemical Science and Engineering, 2018, 12(2): 252–261
25 A P Gao, Y R Li, H T Lv, D Liu, N Zhao, Q Q Ding, X H Gao. Melamine tunable effect in a lenalidomide-based supramolecular self-assembly system via hydrogen bonding. New Journal of Chemistry, 2017, 41(16): 7924–7931
26 B Kaczmarczyk. FTi.r. study of hydrogen bonds in aliphatic polyesteramides. Polymer, 1998, 39(23): 5853–5860
27 K Hermansson. Blue-shifting hydrogen bonds. Journal of Physical Chemistry A, 2002, 106(18): 4695–4702
28 S Ghosh, K Goswami, K Ghosh. Pyrrole-based tetra-amide for hydrogen pyrophosphate (HP2O73-) and F- ions in sol-gel medium. Supramolecular Chemistry, 2017, 29(12): 946–952
29 Q Lin, X Zhu, Y P Fu, Y M Zhang, R Fang, L Z Yang, T B Wei. Rationally designed anion-responsive-organogels: Sensing F via reversible color changes in gel-gel states with specific selectivity. Soft Matter, 2014, 10(31): 5715–5723
30 H H Song, J H Yoo, J K Doe, K S Lee, Y K Choi, S R Keum. Liquid crystal structures of spirobenzopyram derivatives. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2000, 349(1): 267–270
31 M Marzec, J Popczyk, A Fąfara, S Wróbel, R Dąbrowski. Antiferroelectric liquid crystals studied by differential scanning calorimetry and electrooptic methods. Ferroelectrics, 2002, 281(1): 123–134
Related articles from Frontiers Journals
[1] Yaodong Huang, Shuxue Liu, Zhuofeng Xie, Zipei Sun, Wei Chai, Wei Jiang. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response[J]. Front. Chem. Sci. Eng., 2018, 12(2): 252-261.
[2] Ziyan Li,Yaodong Huang,Dongli Fan,Huimin Li,Shuxue Liu,Luyuan Wang. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups[J]. Front. Chem. Sci. Eng., 2016, 10(4): 552-561.
[3] Yan Zhai,Wei Chai,Wenwen Cao,Zipei Sun,Yaodong Huang. Organogelators based on p-alkoxylbenzamide and their self-assembling properties[J]. Front. Chem. Sci. Eng., 2015, 9(4): 488-493.
[4] Zipei SUN,Xuelin DONG,Yan ZHAI,Ziyan Li,Yaodong HUANG. 2,5-Dialkoxylphenyl-1,3,4-oxadiazoles as efficient organogelators and their self-assembling property[J]. Front. Chem. Sci. Eng., 2014, 8(2): 219-224.
[5] WANG Shoulian, HE Jie, ZENG Yu, YAN Bin, WANG Yinghan. Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films[J]. Front. Chem. Sci. Eng., 2008, 2(3): 265-268.
Full text