Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment
Jayshree Ashree, Qi Wang, Yimin Chao
Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment
Despite all major breakthroughs in recent years of research, we are still unsuccessful to effectively diagnose and treat cancer that has express and metastasizes. Thus, the development of a novel approach for cancer detection and treatment is crucial. Recent progress in Glyconanotechnology has allowed the use of glycans and lectins as bio-functional molecules for many biological and biomedical applications. With the known advantages of quantum dots (QDs) and versatility of carbohydrates and lectins, Glyco-functionalised QD is a new prospect in constructing biomedical imaging platform for cancer behaviour study as well as treatment. In this review, we aim to describe the current utilisation of Glyco-functionalised QDs as well as their future prospective to interpret and confront cancer.
carbohydrate / leptin / glyco-functionalised QD / bioimaging / cancer diagnosis and treatment
[1] |
Bentolila L A, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 2009, 50(4): 493–496
CrossRef
Google scholar
|
[2] |
Byers R J, Hitchman E R. Quantum dots brighten biological imaging. Progress in Histochemistry and Cytochemistry, 2011, 45(4): 201–237
CrossRef
Google scholar
|
[3] |
Tholouli E, Sweeney E, Barrow E, Clay V, Hoyland J, Byers R. Quantum dots light up pathology. Journal of Pathology, 2008, 216(3): 275–285
CrossRef
Google scholar
|
[4] |
He X, Gao J, Gambhir S S, Cheng Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: Status and challenges. Trends in Molecular Medicine, 2010, 16(12): 574–583
CrossRef
Google scholar
|
[5] |
Hilderbrand S A, Weissleder R. Near-infrared fluorescence: Application to in vivo molecular imaging. Current Opinion in Chemical Biology, 2010, 14(1): 71–79
CrossRef
Google scholar
|
[6] |
Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine (London), 2011, 7(4): 385–402
CrossRef
Google scholar
|
[7] |
Varki A, Cummings R D, Esko J D, Freeze H H, Stanley P, Bertozzi C R, Hart G W, Etzler M E. Essentials of Glycobiology. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2009
|
[8] |
Calvaresi E C, Hergenrother P J. Glucose conjugation for the specific targeting and treatment of cancer. Chemical Science (Cambridge), 2013, 4(6): 2319–2333
CrossRef
Google scholar
|
[9] |
Kottari N, Chabre Y M, Sharma R, Roy R. Applications of glyconanoparticles as “sweet” glycobiological therapeutics and diagnostics. In: Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Dutta P K, Dutta J, eds. Berlin: Springer International Publishing, 2013
|
[10] |
Marradi M, Chiodo F, Garcia I, Penades S. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chemical Society Reviews, 2013, 42(11): 4728–4745
CrossRef
Google scholar
|
[11] |
Luczkowiak J, Munoz A, Sanchez-Navarro M, Ribeiro-Viana R, Ginieis A, Illescas B M, Martin N, Delgado R, Rojo J. Glycofullerenes inhibit viral infection. Biomacromolecules, 2013, 14(2): 431–437
CrossRef
Google scholar
|
[12] |
Ribeiro-Viana R, Sánchez-Navarro M, Luczkowiak J, Koeppe J R, Delgado R, Rojo J, Davis B G. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nature Communications, 2012, 3(1): 1303
CrossRef
Google scholar
|
[13] |
Fasting C, Schalley C A, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp E W, Haag R. Multivalency as a chemical organization and action principle. Angewandte Chemie International Edition, 2012, 51(42): 10472–10498
CrossRef
Google scholar
|
[14] |
Liu B, Lu X, Ruan H, Cui J, Li H. Synthesis and applications of glyconanoparticles. Current Organic Chemistry, 2016, 20(14): 1502–1511
CrossRef
Google scholar
|
[15] |
Reichardt N C, Martin-Lomas M, Penades S. Glyconanotechnology. Chemical Society Reviews, 2013, 42(10): 4358–4376
CrossRef
Google scholar
|
[16] |
Sharon N, Lis H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11): 53R–62R
CrossRef
Google scholar
|
[17] |
Sharon N, Lis H. Lectins as cell recognition molecules. Science, 1989, 246(4927): 227–234
CrossRef
Google scholar
|
[18] |
Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annual Review of Biochemistry, 1982, 51(1): 531–554
CrossRef
Google scholar
|
[19] |
Belardi B, Bertozzi C R. Chemical lectinology: Tools for probing the ligands and dynamics of mammalian lectins in vivo. Chemistry & Biology, 2015, 22(8): 983–993
CrossRef
Google scholar
|
[20] |
André S, Kaltner H, Manning J C, Murphy P V, Gabius H J. Lectins: Getting familiar with translators of the sugar code. Molecules (Basel, Switzerland), 2015, 20(2): 1788–1823
CrossRef
Google scholar
|
[21] |
Surolia A, Bachhawat B K, Podder S K. Interaction between lectin from ricinus communis and liposomes containing gangliosides. Nature, 1975, 257(5529): 802–804
CrossRef
Google scholar
|
[22] |
Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Frontiers in Oncology, 2014, 4: 28
CrossRef
Google scholar
|
[23] |
Friedel M, Andre S, Goldschmidt H, Gabius H J, Schwartz-Albiez R. Galectin-8 enhances adhesion of multiple myeloma cells to vascular endothelium and is an adverse prognostic factor. Glycobiology, 2016, 26(10): 1048–1058
CrossRef
Google scholar
|
[24] |
Compagno D, Gentilini L D, Jaworski F M, Pérez I G, Contrufo G, Laderach D J. Glycans and galectins in prostate cancer biology, angiogenesis and metastasis. Glycobiology, 2014, 24(10): 899–906
CrossRef
Google scholar
|
[25] |
Vazquez-Levin M H, Marin-Briggiler C I, Caballero J N, Veiga M F. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Developmental Biology, 2015, 401(1): 2–16
CrossRef
Google scholar
|
[26] |
Ng K, Ferreyra J, Higginbottom S, Lynch J, Kashyap P, Gopinath S, Naidu N, Choudhury B, Weimer B, Monack D, Sonnenburg J L. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature, 2013, 502(7469): 96–99
CrossRef
Google scholar
|
[27] |
Becer C R. The glycopolymer code: Synthesis of glycopolymers and multivalent carbohydrate-lectin interactions. Macromolecular Rapid Communications, 2012, 33(9): 742–752
CrossRef
Google scholar
|
[28] |
Kazunori M, Miki H, Takayasu I, Yoshinao Y, Kazukiyo K. Self-organized glycoclusters along DNA: Effect of the spatial arrangement of galactoside residues on cooperative lectin recognition. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(2): 352–359
CrossRef
Google scholar
|
[29] |
Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. Journal of Chemical Physics, 1984, 80(9): 4403–4409
CrossRef
Google scholar
|
[30] |
Alivisatos A P, Gu W, Larabell C. Quantum dots as cellular probes. Annual Review of Biomedical Engineering, 2005, 7(1): 55–76
CrossRef
Google scholar
|
[31] |
Foote M. The importance of planned dose of chemotherapy on time: Do we need to change our clinical practice? Oncologist, 1998, 3(5): 365–368
|
[32] |
Naumov G, Akslen L, Folkman J. Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch. Cell Cycle (Georgetown, Tex.), 2006, 5(16): 1779–1787
CrossRef
Google scholar
|
[33] |
Frangioni J V. New technologies for human cancer imaging. Journal of Clinical Oncology, 2008, 26(24): 4012–4021
CrossRef
Google scholar
|
[34] |
Liu J, Levine A L, Mattoon J S, Yamaguchi M, Lee R J, Pan X, Rosol T J. Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology, 2006, 51(9): 2179–2189
CrossRef
Google scholar
|
[35] |
Massoud T F, Gambhir S S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes & Development, 2003, 17(5): 545–580
CrossRef
Google scholar
|
[36] |
Albrecht T, Blomley M J K, Burns P N, Wilson S, Harvey C J, Leen E, Claudon M, Calliada F, Correas J M, LaFortune M,
CrossRef
Google scholar
|
[37] |
Blomley M J, Cooke J C, Unger E C, Monaghan M J, Cosgrove D O. Microbubble contrast agents: A new era in ultrasound. BMJ (Clinical Research Ed.), 2001, 322(7296): 1222–1225
CrossRef
Google scholar
|
[38] |
Cormode D P, Skajaa T, Fayad Z A, Mulder W J. Nanotechnology in medical imaging: Probe design and applications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29(7): 992–1000
CrossRef
Google scholar
|
[39] |
Weissleder R. Scaling down imaging: Molecular mapping of cancer in mice. Nature Reviews. Cancer, 2002, 2(1): 8–11
CrossRef
Google scholar
|
[40] |
Caravan P, Ellison J J, McMurry T J, Lauffer R B. Gadolinium(iii) chelates as MRI contrast agents: Structure, dynamics, and applications. Chemical Reviews, 1999, 99(9): 2293–2352
CrossRef
Google scholar
|
[41] |
Hoult D I, Phil D. Sensitivity and power deposition in a high-field imaging experiment. Journal of Magnetic Resonance Imaging, 2000, 12(1): 46–67
CrossRef
Google scholar
|
[42] |
Jongmin S, Md A R, Kyeong K M, Ho I G, Hee L J, Su L I. Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angewandte Chemie International Edition, 2009, 48(2): 321–324
CrossRef
Google scholar
|
[43] |
Smith A M, Duan H, Mohs A M, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews, 2008, 60(11): 1226–1240
CrossRef
Google scholar
|
[44] |
Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives. Nanomedicine (London), 2008, 3(1): 83–91
CrossRef
Google scholar
|
[45] |
Wang H, Li H, Zhang W, Wei L M, Yu H X, Yang P Y. Multiplex profiling of glycoproteins using a novel bead-based lectin array. Proteomics, 2014, 14(1): 78–86
CrossRef
Google scholar
|
[46] |
Munkley J, Elliott D J. Hallmarks of glycosylation in cancer. Oncotarget, 2016, 7(23): 35478–35489
CrossRef
Google scholar
|
[47] |
Liu X, Nie H, Zhang Y B, Yao Y F, Maitikabili A, Qu Y P, Shi S L, Chen C Y, Li Y. Cell surface-specific N-glycan profiling in breast cancer. PLoS One, 2013, 8(8): 11
CrossRef
Google scholar
|
[48] |
Scott E, Munkley J. Glycans as biomarkers in prostate cancer. International Journal of Molecular Sciences, 2019, 20(6): 20
CrossRef
Google scholar
|
[49] |
Andrade C G, Cabral Filho P E, Tenório D P L, Santos B S, Beltrão E I C, Fontes A, Carvalho L B. Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry. International Journal of Nanomedicine, 2013, 8: 4623–4629
|
[50] |
He D, Wang D, Shi X, Quan W, Xiong R, Yu C, Huang H. Simultaneous fluorescence analysis of the different carbohydrates expressed on living cell surfaces using functionalized quantum dots. RSC Advances, 2017, 7(20): 12374–12381
CrossRef
Google scholar
|
[51] |
Cunha C R A, Andrade C G, Pereira M I A, Cabral Filho P E, Carvalho L B Jr, Coelho L C B B, Santos B S, Fontes A, Correia M T S. Quantum dot-cramoll lectin as novel conjugates to glycobiology. Journal of Photochemistry and Photobiology. B, Biology, 2018, 178: 85–91
CrossRef
Google scholar
|
[52] |
Akca O, Unak P, Medine E I, Sakarya S, Yurt Kilcar A, Ichedef C, Bekis R, Timur S. Radioiodine labeled CdSe/CdS quantum dots: Lectin targeted dual probes. Radiochimica Acta, 2014, 102(9): 849
CrossRef
Google scholar
|
[53] |
Kara A, Ünak P, Selçuki C, Akça Ö, Medine E İ, Sakarya S. PHA-L lectin and carbohydrate relationship: Conjugation with CdSe/CdS nanoparticles, radiolabeling and in vitro affinities on MCF-7 cells. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1): 807–813
CrossRef
Google scholar
|
[54] |
Santos B, de Farias P, de Menezes F, de Ferreira R, Júnior S, Figueiredo R, de Carvalho L, Beltrão E I C. CdS-Cd(OH)2 core shell quantum dots functionalized with concanavalin a lectin for recognition of mammary tumors. Physica Status Solidi. C, Current Topics in Solid State Physics, 2006, 3(11): 4017–4022
CrossRef
Google scholar
|
[55] |
Ohyanagi T, Nagahori N, Shimawaki K, Hinou H, Yamashita T, Sasaki A, Jin T, Iwanaga T, Kinjo M, Nishimura S I. Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots. Journal of the American Chemical Society, 2011, 133(32): 12507–12517
CrossRef
Google scholar
|
[56] |
Bavireddi H, Kikkeri R. Glyco-β-cyclodextrin capped quantum dots: Synthesis, cytotoxicity and optical detection of carbohydrate-protein interactions. Analyst (London), 2012, 137(21): 5123–5127
CrossRef
Google scholar
|
[57] |
Shinchi H, Wakao M, Nakagawa S, Mochizuki E, Kuwabata S, Suda Y. Stable sugar-chain-immobilized fluorescent nanoparticles for probing lectin and cells. Chemistry, an Asian Journal, 2012, 7(11): 2678–2682
CrossRef
Google scholar
|
[58] |
Shinchi H, Wakao M, Nagata N, Sakamoto M, Mochizuki E, Uematsu T, Kuwabata S, Suda Y. Cadmium-free sugar-chain-immobilized fluorescent nanoparticles containing low-toxicity ZnS-AgInS2 cores for probing lectin and cells. Bioconjugate Chemistry, 2014, 25(2): 286–295
CrossRef
Google scholar
|
[59] |
Zhai Y, Dasog M, Snitynsky R B, Purkait T K, Aghajamali M, Hahn A H, Sturdy C B, Lowary T L, Veinot J G C. Water-soluble photoluminescent D-mannose and L-alanine functionalized silicon nanocrystals and their application to cancer cell imaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(47): 8427–8433
CrossRef
Google scholar
|
[60] |
Lai C H, Hütter J, Hsu C W, Tanaka H, Varela-Aramburu S, De Cola L, Lepenies B, Seeberger P H. Analysis of carbohydrate-carbohydrate interactions using sugar-functionalized silicon nanoparticles for cell imaging. Nano Letters, 2016, 16(1): 807–811
CrossRef
Google scholar
|
[61] |
Hsu C W, Septiadi D, Lai C H, Chen P K, Seeberger P H, De Cola L. Glucose-modified silicon nanoparticles for cellular imaging. ChemPlusChem, 2017, 82(4): 660–667
CrossRef
Google scholar
|
[62] |
Cheng F F, Liang G X, Shen Y Y, Rana R K, Zhu J J. N-Acetylglucosamine biofunctionalized CdSeTe quantum dots as fluorescence probe for specific protein recognition. Analyst (London), 2013, 138(2): 666–670
CrossRef
Google scholar
|
[63] |
Ahire J H, Chambrier I, Mueller A, Bao Y, Chao Y. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. ACS Applied Materials & Interfaces, 2013, 5(15): 7384–7391
CrossRef
Google scholar
|
[64] |
Ahire J H, Behray M, Webster C A, Wang Q, Sherwood V, Saengkrit N, Ruktanonchai U, Woramongkolchai N, Chao Y. Synthesis of carbohydrate capped silicon nanoparticles and their reduced cytotoxicity, in vivo toxicity, and cellular uptake. Advanced Healthcare Materials, 2015, 4(12): 1877–1886
CrossRef
Google scholar
|
[65] |
Dalal C, Jana N R. Galactose multivalency effect on the cell uptake mechanism of bioconjugated nanoparticles. Journal of Physical Chemistry C, 2018, 122(44): 25651–25660
CrossRef
Google scholar
|
[66] |
Zayed D G, Ebrahim S M, Helmy M W, Khattab S N, Bahey-El-Din M, Fang J Y, Elkhodairy K A, Elzoghby A O. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin-QDs nano-hybrids: Covalent coupling and phospholipid complexation approaches. Journal of Nanobiotechnology, 2019, 17(1): 19
CrossRef
Google scholar
|
[67] |
Yin C, Ying L, Zhang P C, Zhuo R X, Kang E T, Leong K W, Mao H Q. High density of immobilized galactose ligand enhances hepatocyte attachment and function. Journal of Biomedical Materials Research. Part A, 2003, 67A(4): 1093–1104
CrossRef
Google scholar
|
[68] |
Hata S, Ishii K. Effect of galactose on binding and endocytosis of asiaioglycoprotein in cultured rat hepatocytes. Annals of Nuclear Medicine, 1998, 12(5): 255–259
CrossRef
Google scholar
|
[69] |
Mishra N, Yadav N P, Rai V K, Sinha P, Yadav K S, Jain S, Arora S. Efficient hepatic delivery of drugs: Novel strategies and their significance. BioMed Research International, 2013, 2013: 20
CrossRef
Google scholar
|
[70] |
Yousef S, Alsaab H O, Sau S, Iyer A K. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon, 2018, 4(12): e01071
CrossRef
Google scholar
|
[71] |
Pranatharthiharan S, Patel M D, Malshe V C, Pujari V, Gorakshakar A, Madkaikar M, Ghosh K, Devarajan P V. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Delivery, 2017, 24(1): 20–29
CrossRef
Google scholar
|
[72] |
Abe M, Manola J B, Oh W K, Parslow D L, George D J, Austin C L, Kantoff P W. Plasma levels of heat shock protein 70 in patients with prostate cancer: A potential biomarker for prostate cancer. Clinical Prostate Cancer, 2004, 3(1): 49–53
CrossRef
Google scholar
|
[73] |
Ciocca D R, Calderwood S K. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 2005, 10(2): 86–103
CrossRef
Google scholar
|
[74] |
Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumorigenic properties. Cell Cycle (Georgetown, Tex.), 2006, 5(22): 2592–2601
CrossRef
Google scholar
|
[75] |
Ahire J H, Wang Q, Coxon P R, Malhotra G, Brydson R, Chen R, Chao Y. Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: Synthesis and their use in biomedical imaging. ACS Applied Materials & Interfaces, 2012, 4(6): 3285–3292
CrossRef
Google scholar
|
[76] |
Zhang L W, Monteiro-Riviere N A. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicological Sciences, 2009, 110(1): 138–155
CrossRef
Google scholar
|
[77] |
Yuan F L, Li S H, Fan Z T, Meng X Y, Fan L Z, Yang S H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11(5): 565–586
CrossRef
Google scholar
|
[78] |
Zhang M, Bai L L, Shang W H, Xie W J, Ma H, Fu Y Y, Fang D C, Sun H, Fan L Z, Han M,
CrossRef
Google scholar
|
[79] |
Fan Z T, Zhou S X, Garcia C, Fan L Z, Zhou J B. pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale, 2017, 9(15): 4928–4933
CrossRef
Google scholar
|
[80] |
Wang Q, Bao Y, Zhang X, Coxon P R, Jayasooriya U A, Chao Y. Uptake and toxicity studies of poly-acrylic acid functionalized silicon nanoparticles in cultured mammalian cells. Advanced Healthcare Materials, 2012, 1(2): 189–198
CrossRef
Google scholar
|
[81] |
Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 2009, 8(4): 331–336
CrossRef
Google scholar
|
[82] |
Chen H, Cui S, Tu Z, Gu Y, Chi X. In vivo monitoring of organ-selective distribution of cdhgte/SiO2 nanoparticles in mouse model. Journal of Fluorescence, 2012, 22(2): 699–706
CrossRef
Google scholar
|
[83] |
Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, Li Y F, Iida A, Tang Z, Zhao Y,
CrossRef
Google scholar
|
[84] |
Schipper M L, Iyer G, Koh A L, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila L A, Li J, Rao J,
CrossRef
Google scholar
|
[85] |
Choi HS, Liu W, Misra P, Tanaka E, Zimmer J P, Ipe B I, Bawendi M G, Frangioni J V. Renal clearance of quantum dots. Nature Biotechnology, 2007, 25(10): 1165–1170
CrossRef
Google scholar
|
[86] |
Zhu Y, Hong H, Xu Z P, Li Z, Cai W. Quantum dot-based nanoprobes for in vivo targeted imaging. Current Molecular Medicine, 2013, 13(10): 1549–1567
CrossRef
Google scholar
|
[87] |
Vela-Ramirez J E, Goodman J T, Boggiatto P M, Roychoudhury R, Pohl N L B, Hostetter J M, Wannemuehler M J, Narasimhan B. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS Journal, 2015, 17(1): 256–267
CrossRef
Google scholar
|
/
〈 | 〉 |