Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation
Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang
Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation
Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution. The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive desilication. The areas containing fewer aluminum atoms contain fewer piperidine protectant molecules and so they dissolve first. Small amounts of mesopores are then gradually generated in areas with more aluminum atoms and more piperidine protectant. In this manner, radial mesopores are formed in the ZSM-5 zeolite with a maximal preservation of the micropores and active sites. The optimal hierarchical ZSM-5 zeolite, prepared with a molar ratio of piperidine to zeolite of 0.03, had a mesopore surface area of 136 m2·g−1 and a solid yield of 80%. The incorporation of the radial mesopores results in micropores that are interconnected which shortened the average diffusion path length. Compared to the parent zeolite, the hierarchical ZSM-5 zeolite possesses more accessible acid sites and has a higher catalytic activity and a longer lifetime for the alkylation of benzene.
hierarchical ZSM-5 zeolite / protective desilication / piperidine / radial mesopores / benzene alkylation
[1] |
Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614
CrossRef
Google scholar
|
[2] |
Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702
CrossRef
Google scholar
|
[3] |
Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420
CrossRef
Google scholar
|
[4] |
Tao Y S, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910
CrossRef
Google scholar
|
[5] |
Zheng H, Zhai D, Zhao L, Zhang C, Yu S, Gao J, Xu C. Insight into the contribution of isolated mesopore on diffusion in hierarchical zeolites: The effect of temperature. Industrial & Engineering Chemistry Research, 2018, 57(15): 5453–5463
CrossRef
Google scholar
|
[6] |
Han J, Cho J, Kim J C, Ryoo R. Confinement of supported metal catalysts at high loading in the mesopore network of hierarchical zeolites, with access via the microporous windows. ACS Catalysis, 2018, 8(2): 876–879
CrossRef
Google scholar
|
[7] |
Jia L Y, Raad M, Hamieh S, Toufaily J, Hamieh T, Bettahar M M, Mauviel G, Tarrighi M, Pinard L, Dufour A. Catalytic fast pyrolysis of biomass: Superior selectivity of hierarchical zeolites to aromatics. Green Chemistry, 2017, 19(22): 5442–5459
CrossRef
Google scholar
|
[8] |
Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793
CrossRef
Google scholar
|
[9] |
Zhang K, Ostraat M L. Innovations in hierarchical zeolite synthesis. Catalysis Today, 2016, 264: 3–15
CrossRef
Google scholar
|
[10] |
Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
CrossRef
Google scholar
|
[11] |
Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045
CrossRef
Google scholar
|
[12] |
Zhu K, Egeblad K, Christensen C H. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites. European Journal of Inorganic Chemistry, 2007, 2007(25): 3955–3960
CrossRef
Google scholar
|
[13] |
Xiao F, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 45(19): 3090–3093
CrossRef
Google scholar
|
[14] |
Zhao Z, Liu Y, Wu H, Li X, He M, Wu P. Hydrothermal synthesis of mesoporous titanosilicate with the aid of amphiphilic organosilane. Journal of Porous Materials, 2010, 17(4): 399–408
CrossRef
Google scholar
|
[15] |
Liu H, Zhang S, Xie S, Zhang W, Xin W, Liu S, Xu L. Synthesis, characterization, and catalytic performance of hierarchical ZSM-11 zeolite synthesized via dual-template route. Chinese Journal of Catalysis, 2018, 39(1): 167–180
CrossRef
Google scholar
|
[16] |
Wang X, Chen H, Meng F, Gao F, Sun C, Sun L, Wang S, Wang L, Wang Y. CTAB resulted direct synthesis and properties of hierarchical ZSM-11/5 composite zeolite in the absence of template. Microporous and Mesoporous Materials, 2017, 243: 271–280
CrossRef
Google scholar
|
[17] |
Groen J C, Jansen J C, Moulijn J A, Pérez-Ramírez J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. Journal of Physical Chemistry B, 2004, 108(35): 13062–13065
CrossRef
Google scholar
|
[18] |
Groen J C, Peffer L A A, Moulijn J A, Pérez-Ramírez J. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore‐directing agent. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(17): 4983–4994
CrossRef
Google scholar
|
[19] |
Rutkowska M, Pacia I, Basąg S, Kowalczyk A, Piwowarska Z, Duda M, Tarach K A, Góra-Marek K, Michalik M, Díaz U, Chmielarz L. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes. Microporous and Mesoporous Materials, 2017, 246: 193–206
CrossRef
Google scholar
|
[20] |
Oruji S, Khoshbin R, Karimzadeh R. Preparation of hierarchical structure of Y zeolite with ultrasonic-assisted alkaline treatment method used in catalytic cracking of middle distillate cut: the effect of irradiation time. Fuel Processing Technology, 2018, 176: 283–295
CrossRef
Google scholar
|
[21] |
Groen J C, Sano T, Moulijn J A, Pérez-Ramírez J. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. Journal of Catalysis, 2007, 251(1): 21–27
CrossRef
Google scholar
|
[22] |
Pérez-Ramírez J, Abello S, Villaescusa L A, Bonilla A. Toward functional clathrasils: Size- and composition-controlled octadecasil nanocrystals by desilication. Angewandte Chemie International Edition, 2008, 47(41): 7913–7917
CrossRef
Google scholar
|
[23] |
Verboekend D, Pérez-Ramírez J. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(4): 1137–1147
CrossRef
Google scholar
|
[24] |
Sadowska K, Wach A, Olejniczak Z, Kustrowski P, Datka J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 167(3): 82–88
CrossRef
Google scholar
|
[25] |
Groen J C, Peffer L A A, Moulijn J A, Pérez-Ramírez J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241(1-3): 53–58
CrossRef
Google scholar
|
[26] |
Pérez-Ramírez J, Verboekend D, Bonilla A, Abello S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979
CrossRef
Google scholar
|
[27] |
Milina M, Mitchell S, Crivelli P, Cooke D, Pérez-Ramírez J. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nature Communications, 2014, 5(1): 3922–3931
CrossRef
Google scholar
|
[28] |
Wang D, Zhang L, Chen L, Wu H, Wu P. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3511–3521
CrossRef
Google scholar
|
[29] |
Wang D, Xu L, Wu P. Hierarchical, core-shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(37): 15535–15545
CrossRef
Google scholar
|
[30] |
Kalipcilar H, Culfaz A. Influence of nature of silica source on template-free synthesis of ZSM-5. Crystal Research and Technology, 2001, 36(11): 1197–1207
CrossRef
Google scholar
|
[31] |
Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska V T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619
CrossRef
Google scholar
|
[32] |
Groen J C, Moulijn J A, Pérez-Ramírez J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16(22): 2121–2131
CrossRef
Google scholar
|
[33] |
Yoo W C, Zhang X, Tsapatsis M, Stein A. Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, 2012, 149(1): 147–157
CrossRef
Google scholar
|
[34] |
Pérez-Ramírez J, Abelló S, Bonilla A, Groen J C. Tailored mesoporosity development in zeolite crystals by partial detemplation and desilication. Advanced Functional Materials, 2009, 19(1): 164–172
CrossRef
Google scholar
|
[35] |
Gornicka E, Rode J E. Raczynska, E D, Dasiewicz B, Dobrowolski J C. Vibrational Spectroscopy, 2004, 36: 105–115
|
[36] |
Kokotailo G T, Lawton S L, Olson D H, Meier W M. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272(5652): 437–438
CrossRef
Google scholar
|
[37] |
Zhu K, Sun J, Liu J, Wang L, Wan H, Hu J, Wang Y, Peden C H F, Nie Z. Solvent evaporation assisted preparation of oriented nanocrystalline mesoporous MFI zeolites. ACS Catalysis, 2011, 1(7): 682–690
CrossRef
Google scholar
|
[38] |
Liu Y, Zhang W, Liu Z, Xu S, Wang Y, Xie Z, Han X, Bao X. Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR. Journal of Physical Chemistry C, 2008, 112(39): 15375–15381
CrossRef
Google scholar
|
[39] |
Schumacher R, Karge H G. Sorption kinetics study of the diethylbenzene isomers in MFI-type zeolites. Microporous and Mesoporous Materials, 1999, 30(2-3): 307–314
CrossRef
Google scholar
|
[40] |
Zhou J, Liu Z, Wang Y, Gao H, Li L, Yang W, Xie Z, Tang Y. Enhanced accessibility and utilization efficiency of acid sites in hierarchical MFI zeolite catalyst for effective diffusivity improvement. RSC Advances, 2014, 4(82): 43752–43755
CrossRef
Google scholar
|
[41] |
Yang W, Wang Z, Sun H, Zhang B. Advances in development and industrial applications of ethylbenzene processes. Chinese Journal of Catalysis, 2016, 37(1): 16–26
CrossRef
Google scholar
|
[42] |
Saxena S K, Viswanadham N. Hierarchically nano porous nano crystalline ZSM-5 for improved alkylation of benzene with bio-ethanol. Applied Materials Today, 2016, 5: 25–32
CrossRef
Google scholar
|
[43] |
Lei Z, Liu L, Dai C. Insight into the reaction mechanism and charge transfer analysis for the alkylation of benzene with propylene over H-β zeolite. Molecular Catalysis, 2018, 454: 1–11
CrossRef
Google scholar
|
[44] |
Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371
CrossRef
Google scholar
|
/
〈 | 〉 |