Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor
Hui Shang, Pengfei Ye, Yude Yue, Tianye Wang, Wenhui Zhang, Sainab Omar, Jiawei Wang
Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor
Hydrodesulfurization (HDS) of thiophene, as a gasoline model oil, over an industrial Ni-Mo/Al2O3 catalyst was investigated in a continuous system under microwave irradiation. The HDS efficiency was much higher (5%–14%) under microwave irradiation than conventional heating. It was proved that the reaction was enhanced by both microwave thermal and non-thermal effects. Microwave selective heating caused hot spots inside the catalyst, thus improved the reaction rate. From the analysis of the non-thermal effect, the molecular collisions were significantly increased under microwave irradiation. However, instead of being reduced, the apparent activation energy increased. This may be due to the microwave treatment hindering the adsorption though upright S-bind (η1) and enhancing the parallel adsorption (η5), both adsorptions were considered to favor to the direct desulfurization route and the hydrogenation route respectively. Therefore, the HDS process was considered to proceed along the hydrogenation route under microwave irradiation.
thiophene / microwave irradiation / hydrodesulfurization / non-thermal microwave effect
[1] |
Kaufmann T G, Kaldor A, Stuntz G F, Kerby M C, Ansell L L. Catalysis science and technology for cleaner transportation fuels. Catalysis Today, 2000, 62(1): 77–90
CrossRef
Google scholar
|
[2] |
Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86(1-4): 211–263
CrossRef
Google scholar
|
[3] |
Liu N, Wang X, Xu W, Hu H, Liang J, Qiu J. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel, 2014, 119: 163–169
CrossRef
Google scholar
|
[4] |
Shang H, Du W, Liu Z, Zhang H. Development of microwave induced hydrodesulfurization of petroleum streams: A review. Journal of Industrial and Engineering Chemistry, 2013, 19(4): 1061–1068
CrossRef
Google scholar
|
[5] |
Ghosh P, Andrews A T, Quann R J, Halbert T R. Detailed kinetic model for the hydro-desulfurization of FCC naphtha. Energy & Fuels, 2009, 23(12): 5743–5759
CrossRef
Google scholar
|
[6] |
Wang H, Wu Y, Liu Z, He L, Yao Z, Zhao W. Deposition of WO3 on Al2O3 via a microwave hydrothermal method to prepare highly dispersed W/Al2O3 hydrodesulfurization catalyst. Fuel, 2014, 136: 185–193
CrossRef
Google scholar
|
[7] |
Miadonye A, Snow S, Irwin D J G, Khan M R, Britten A J. Desulfurization of heavy crude oil by microwave irradiation. International Journal of Multiphase Flow, 2009, 63: 455–465
|
[8] |
Mutyala S, Fairbridge C, Paré J R J, Bélanger J M R, Ng S, Hawkins R. Microwave applications to oil sands and petroleum: A review. Fuel Processing Technology, 2010, 91(2): 127–135
CrossRef
Google scholar
|
[9] |
Leadbeater N E, Khan M R. Microwave-promoted desulfurization of heavy and sulfur-containing crude oil. Energy & Fuels, 2008, 22(3): 1836–1839
CrossRef
Google scholar
|
[10] |
Rodríguez A M, Prieto P, de la Hoz A, Díaz-Ortiz Á, Martín D R, García J I. Influence of polarity and activation energy in microwave-assisted organic synthesis (MAOS). ChemistryOpen, 2015, 4(3): 308–317
CrossRef
Google scholar
|
[11] |
Zhang X, Hayward D O, Mingos D M P. Effects of microwave dielectric heating on heterogeneous catalysis. Catalysis Letters, 2003, 88(1/2): 33–38
CrossRef
Google scholar
|
[12] |
Perry W L, Katz J D, Rees D, Paffet M T, Datye A K. Kinetics of the microwave-heated CO oxidation reaction over alumina-supported Pd and Pt catalysts. Journal of Catalysis, 1997, 171(2): 431–438
CrossRef
Google scholar
|
[13] |
Booske J H, Cooper R F, Freeman S A. Microwave enhanced reaction kinetics in ceramics. Materials Research Innovations, 1997, 1(2): 77–84
CrossRef
Google scholar
|
[14] |
Kappe C O. Microwave dielectric heating in synthetic organic chemistry. Chemical Society Reviews, 2008, 37(6): 1127–1139
CrossRef
Google scholar
|
[15] |
Gao X, Li X G, Zhang J S, Sun J Y, Li H. Influence of a microwave irradiation field on vapor-liquid equilibrium. Chemical Engineering Science, 2013, 90: 213–220
CrossRef
Google scholar
|
[16] |
Meredith R. Engineers Handbook of Industrial Microwave Heating. London: Institute of Electrical Engineers, 1998, 19–20
|
[17] |
Raner K D, Strauss C R, Vyskoc F, Mokbel L. A comparison of reaction kinetics observed under microwave irradiation and conventional heating. Journal of Organic Chemistry, 1993, 58(4): 950–953
CrossRef
Google scholar
|
[18] |
Borges I Jr, Silva A M, Aguiar A P, Borges L E P, Santos J C A, Dias M H C. Density functional theory molecular simulation of thiophene adsorption on MoS2 including microwave effects. Journal of Molecular Structure THEOCHEM, 2007, 822(1-3): 80–88
CrossRef
Google scholar
|
[19] |
Mills P, Korlann S, Bussell M E, Reynolds M A, Ovchinnikov M V, Angelici R J, Stinner C, Weber T, Prins R. Vibrational study of organometallic complexes with thiophene ligands: Models for adsorbed thiophene on hydrodesulfurization catalysts. Journal of Physical Chemistry A, 2001, 105(18): 4418–4429
CrossRef
Google scholar
|
[20] |
Moses P, Hinnemann B, Topsoe H, Norskov J. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study. Journal of Catalysis, 2007, 248(2): 188–203
CrossRef
Google scholar
|
[21] |
Wang H, Iglesia E. Thiophene hydrodesulfurization catalysis on supported Ru clusters: Mechanism and site requirements for hydrogenation and desulfurization pathways. Journal of Catalysis, 2010, 273(2): 245–256
CrossRef
Google scholar
|
[22] |
Zheng P, Duan A, Chi K, Zhao L, Zhang C, Xu C, Zhao Z, Song W, Wang X, Fan J. Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS2 edges: A DFT study. Chemical Engineering Science, 2017, 164: 292–306
CrossRef
Google scholar
|
[23] |
Ma X, Schobert H H. Molecular simulation on hydrodesulfurization of thiophenic compounds over MoS2 using ZINDO. Journal of Molecular Catalysis A Chemical, 2000, 160(2): 409–427
CrossRef
Google scholar
|
[24] |
Wiegand B C, Friend C M. Model studies of the desulfurization reactions on metal surfaces and in organometallic complexes. ChemInform, 1992, 23: 491–504
|
[25] |
Cristol S, Paul J F, Schovsbo C, Veilly E, Payen E. DFT study of thiophene adsorption on molybdenum sulfide. Journal of Catalysis, 2006, 239(1): 145–153
CrossRef
Google scholar
|
[26] |
Raybaud P, Hafner J, Kresse G, Toulhoat H. Adsorption of thiophene on the catalytically active surface of MoS2: An ab initio, local-density-functional study. Physical Review Letters, 1998, 80(7): 1481–1484
CrossRef
Google scholar
|
[27] |
Shang H, Zhao J M, liu Z C, Bai B, Zhang H C. China Patent, 201210160627.4, 2015-04-01
|
[28] |
Shang H, Zhao J M. China Patent, 201210160686.1, 2015-01-07
|
[29] |
Shang H, Zhao J M, liu Z C, Zhang H C. China Patent, 201210320334.8, 2014-09-03
|
[30] |
Shang H, Zhao J M, Liu Z C. China Patent, 201210454604.4, 2015-06-03
|
[31] |
Shang H, Zhao J M, Zhang W H. China Patent, 201410156106.0, 2017-05-03
|
[32] |
Shang H, Zhang H, Li W, Liu Z, Bai B, Liu Z. Study on the hydrodesulfurization of thiophene model compound under microwave irradiation. Journal of Kunming University Technology: Nature Science Edition, 2012, 37: 294–299 (in Chinese)
|
[33] |
Shang H, Shi J C, Li J, Liu Y, Zhang W H. Reactor design of microwave assisted demetallization of heavy crude oil. Chemical Engineering Transactions, 2014, 39: 511–516
|
[34] |
Zhang X, Hayward D O, Mingos D M P. Effects of microwave dielectric heating on heterogeneous catalysis. Catalysis Letters, 2003, 88(1/2): 33–38
CrossRef
Google scholar
|
[35] |
Chemat F, Esveld D C, Poux M, Di-Martino J L. Role of selective heating in the microwave activation of heterogeneous catalysis reactions using a continuous microwave reactor. Journal of Microwave Power and Electromagnetic Energy, 1998, 33(2): 88–94
CrossRef
Google scholar
|
[36] |
Zhang X, Hayward D O, Lee C, Mingos D M P. Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts. Applied Catalysis B: Environmental, 2001, 33(2): 137–148
CrossRef
Google scholar
|
[37] |
Zhang X, Hayward D O, Mingos D M P. Dielectric properties of MoS2 and Pt catalysts: Effects of temperature and microwave frequency. Catalysis Letters, 2002, 84(3/4): 225–233
CrossRef
Google scholar
|
[38] |
Topsøe H, Clausen B S, Massoth F E. Hydrotreating Catalysis. Berlin: Springer-Verlag, 1996, 116–118
|
[39] |
Borgna A, Hensen E J M, Coulier L, de Croon M H J M, Schouten J C, van Veen J A R, Niemantsverdriet J W. Intrinsic thiophene hydrodesulfurization kinetics of a sulfided NiMo/SiO2 model catalyst: Volcano-type behavior. Catalysis Letters, 2003, 90(3/4): 117–122
CrossRef
Google scholar
|
[40] |
Xu C M, Yang C H. Petroleum Refinery Engineering. 4th ed. Beijing: Petroleum Industry Press, 2009, 373–376 (in Chinese)
|
[41] |
Clark D E, Folz D C, West J K. Processing materials with microwave energy. Materials Science and Engineering A, 2000, 287(2): 153–158
CrossRef
Google scholar
|
[42] |
Perreux L, Loupy A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium and mechanistic considerations. Tetrahedron, 2001, 57(45): 9199–9223
CrossRef
Google scholar
|
[43] |
Tarbuck T L, Mccrea K R, Logan J W, Heiser J L, Bussell M E. Identification of the adsorption mode of thiophene on sulfided Mo catalysts. Journal of Physical Chemistry B, 1998, 102(40): 7845–7857
CrossRef
Google scholar
|
[44] |
Mitchell P C H, Green D A, Grimblot J, Payen E, Tomkinson J. Interaction of thiophene with a molybdenum disulfide catalyst: An inelastic neutron scattering study. Physical Chemistry Chemical Physics, 1995, 104: 325–329
|
[45] |
Zhao L, Chen Y, Gao J, Chen Y. Desulfurization mechanism of FCC gasoline: A review. Frontiers of Chemical Science and Engineering, 2010, 4(3): 314–321
CrossRef
Google scholar
|
[46] |
Ruette F, Valencia N, Sanchez-delgado R. Molecular analogs of surface species. 2. A theoretical study of molybdenum carbonyl thiophene complexes: Organometallic models for the chemisorption of thiophene. Journal of the American Chemical Society, 1989, 111(1): 40–46
CrossRef
Google scholar
|
/
〈 | 〉 |