Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces

Daniil Marinov

Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (4) : 815 -822.

PDF (255KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (4) : 815 -822. DOI: 10.1007/s11705-019-1837-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces

Author information +
History +
PDF (255KB)

Abstract

Reactions of atoms and molecules on chamber walls in contact with low temperature plasmas are important in various technological applications. Plasma-surface interactions are complex and relatively poorly understood. Experiments performed over the last decade by several groups prove that interactions of reactive species with relevant plasma-facing materials are characterized by distributions of adsorption energy and reactivity. In this paper, we develop a kinetic Monte Carlo (KMC) model that can effectively handle chemical kinetics on such heterogenous surfaces. Using this model, we analyse published adsorption-desorption kinetics of chlorine molecules and recombination of oxygen atoms on rotating substrates as a test case for the KMC model.

Graphical abstract

Keywords

plasma-surface interaction / kinetic Monte Carlo / plasma nano technology

Cite this article

Download citation ▾
Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces. Front. Chem. Sci. Eng., 2019, 13(4): 815-822 DOI:10.1007/s11705-019-1837-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Donnelly V M, Kornblit A. Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2013, 31(5): 050825–050872

[2]

Zhang D, Kushner M J. Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2001, 19(2): 524–538

[3]

Brichon P, Despiau-Pujo E, Mourey O, Joubert O. Key plasma parameters for nanometric precision etching of Si films in chlorine discharges. Journal of Applied Physics, 2015, 118(5): 053303–053312

[4]

Barone M E, Graves D B. Molecular-dynamics simulations of direct reactive ion etching of silicon by fluorine and chlorine. Journal of Applied Physics, 1995, 78(11): 6604–6617

[5]

Benedikt J, Woen R V, van Mensfoort S L M, Perina V, Hong J, van de Sanden M C M. Plasma chemistry during the deposition of a-C:H films and its influence on film properties. Diamond and Related Materials, 2003, 12(2): 90–97

[6]

Tsalikis D G, Baig C, Mavrantzas V G, Amanatides E, Mataras D. A hybrid kinetic Monte Carlo method for simulating silicon films grown by plasma-enhanced chemical vapor deposition. Journal of Chemical Physics, 2013, 139(20): 204706–204719

[7]

Crose M, Sang-Il Kwon J, Nayhouse M, Ni D, Christofides P D. Multiscale modeling and operation of PECVD of thin film solar cells. Chemical Engineering Science, 2015, 136: 50–61

[8]

Zyulkov I, Krishtab M, De Gendt S, Armini S. Selective Ru ALD as a catalyst for sub-seven-nanometer bottom-up metal interconnects. ACS Applied Materials & Interfaces, 2017, 9(36): 31031–31041

[9]

von Keudell A, Möller W. A combined plasma-surface model for the deposition of C:H films from a methane plasma. Journal of Applied Physics, 1994, 75(12): 7718–7727

[10]

Neyts E C. PECVD growth of carbon nanotubes: From experiment to simulation. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures : Processing, Measurement, and Phenomena : An Official Journal of the American Vacuum Society, 2012, 30: 030803–030819

[11]

Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446

[12]

Kim H H. Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Processes and Polymers, 2004, 1(2): 91–110

[13]

Neyts E C, Bogaerts A. Understanding plasma catalysis through modelling and simulation—a review. Journal of Physics. D, Applied Physics, 2014, 47(22): 224010–224027

[14]

Meana-Pañeda R, Paukku Y, Duanmu K, Norman P, Schwartzentruber T E, Truhlar D G. Atomic oxygen recombination at surface defects on reconstructed (0001) α-quartz exposed to atomic and molecular oxygen. Journal of Physical Chemistry C, 2015, 119(17): 9287–9301

[15]

Neyts E C, Brault P. Molecular dynamics simulations for plasma-surface interactions. Plasma Processes and Polymers, 2017, 14(1-2): 1600145–1600164

[16]

Marinov D, Teixeira C, Guerra V. Deterministic and Monte Carlo methods for simulation of plasma-surface interactions. Plasma Processes and Polymers, 2017, 14(1-2): 1600175–1600192

[17]

Guerra V, Marinov D. Dynamical Monte Carlo methods for plasma-surface reactions. Plasma Sources Science & Technology, 2016, 25(4): 045001–045016

[18]

Cuppen H M, Karssemeijer L J, Lamberts T. The kinetic Monte Carlo method as a way to solve the master equation for interstellar grain chemistry. Chemical Reviews, 2013, 113(12): 8840–8871

[19]

Norman P, Schwartzentruber T E, Leverentz H, Luo S, Meana-Paneda R, Paukku Y, Truhlar D G. The structure of silica surfaces exposed to atomic oxygen. Journal of Physical Chemistry C, 2013, 117(18): 9311–9321

[20]

Stamatakis M. Kinetic modelling of heterogeneous catalytic systems. Journal of Physics Condensed Matter, 2015, 27(1): 013001–013028

[21]

Rutigliano M, Zazza C, Sanna N, Pieretti A, Mancini G, Barone V, Cacciatore M. Oxygen adsorption on β-cristobalite polymorph: ab initio modeling and semiclassical time-dependent dynamics. Journal of Physical Chemistry A, 2009, 113(52): 15366–15375

[22]

Guha J, Kurunczi P, Stafford L, Donnelly V M, Pu Y K. In-situ surface recombination measurements of oxygen atoms on anodized aluminum in an oxygen plasma. Journal of Physical Chemistry C, 2008, 112(24): 8963–8968

[23]

Donnelly V M, Guha J, Stafford L. Critical review: Plasma-surface reactions and the spinning wall method. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2011, 29(1): 010801–010825

[24]

Guha J, Donnelly V M. Studies of chlorine-oxygen plasmas and evidence for heterogeneous formation of ClO and ClO2. Journal of Applied Physics, 2009, 105(11): 113307–113316

[25]

Marinov D, Guaitella O, Rousseau A, Ionikh Y. Production of molecules on a surface under plasma exposure: Example of NO on pyrex. Journal of Physics. D, Applied Physics, 2010, 43(11): 115203–115209

[26]

Guerra V, Marinov D, Guaitella O, Rousseau A. NO oxidation on plasma pretreated Pyrex: The case for a distribution of reactivity of adsorbed O atoms. Journal of Physics. D, Applied Physics, 2014, 47(22): 224012–224023

[27]

Guaitella O, Lazzaroni C, Marinov D, Rousseau A. Evidence of atomic adsorption on TiO2 under plasma exposure and related C2H2 surface reactivity. Applied Physics Letters, 2010, 97(1): 011502–011504

[28]

Marinov D, Guaitella O, de los Arcos T, von Keudell A, Rousseau A. Adsorption and reactivity of nitrogen atoms on silica surface under plasma exposure. Journal of Physics. D, Applied Physics, 2014, 47(47): 475204–475214

[29]

Kim Y C, Boudart M. Recombination of oxygen, nitrogen, and hydrogen atoms on silica: Kinetics and mechanism. Langmuir, 1991, 7(12): 2999–3005

[30]

Guerra V. Analytical model of heterogeneous atomic recombination on silicalike surfaces. IEEE Transactions on Plasma Science, 2007, 35(5): 1397–1412

[31]

Stafford L, Guha J, Khare R, Mattei S, Boudreault O, Clain B, Donnelly V M. Experimental and modeling study of O and Cl atoms surface recombination reactions in O2 and Cl2 plasmas. Pure and Applied Chemistry, 2010, 82(6): 1301–1315

[32]

Guerra V, Dias F M, Loureiro J, P A, Supiot P, Dupret C, Popov T. Time-dependence of the electron energy distribution function in the nitrogen afterglow. IEEE Transactions on Plasma Science, 2003, 31(4): 542–552

[33]

Gillespie D T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 1976, 22(4): 403–434

[34]

Kurunczi P F, Guha J, Donnelly V M. Recombination reactions of oxygen atoms on an anodized aluminum plasma reactor wall, studied by a spinning wall method. Journal of Physical Chemistry B, 2005, 109(44): 20989–20998

[35]

Stafford L, Guha J, Donnelly V M. Recombination probability of oxygen atoms on dynamic stainless steel surfaces in inductively coupled O2 plasmas. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2008, 26(3): 455–461

[36]

Guha J, Khare R, Stafford L, Donnelly V M, Sirard S, Hudson E A. Effect of Cu contamination on recombination of O atoms on a plasma-oxidized silicon surface. Journal of Applied Physics, 2009, 105(11): 113309–113316

[37]

Janssen C, Tuzson B. Isotope evidence for ozone formation on surfaces. Journal of Physical Chemistry A, 2010, 114(36): 9709–9719

[38]

Marinov D, Guaitella O, Booth J P, Rousseau A. Direct observation of ozone formation on SiO2 surfaces in O2 discharges. Journal of Physics. D, Applied Physics, 2013, 46(3): 032001–032004

[39]

Lopaev D V, Malykhin E M, Zyryanov S M. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone. Journal of Physics. D, Applied Physics, 2010, 44(1): 015202–015217

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (255KB)

1838

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/