Current understanding and applications of the cold sintering process

Tong Yu , Jiang Cheng , Lu Li , Benshuang Sun , Xujin Bao , Hongtao Zhang

Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (4) : 654 -664.

PDF (2015KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (4) : 654 -664. DOI: 10.1007/s11705-019-1832-1
REVIEW ARTICLE
REVIEW ARTICLE

Current understanding and applications of the cold sintering process

Author information +
History +
PDF (2015KB)

Abstract

In traditional ceramic processing techniques, high sintering temperature is necessary to achieve fully dense microstructures. But it can cause various problems including warpage, overfiring, element evaporation, and polymorphic transformation. To overcome these drawbacks, a novel processing technique called “cold sintering process (CSP)” has been explored by Randall et al. CSP enables densification of ceramics at ultra-low temperature (≤300°C) with the assistance of transient aqueous solution and applied pressure. In CSP, the processing conditions including aqueous solution, pressure, temperature, and sintering duration play critical roles in the densification and properties of ceramics, which will be reviewed. The review will also include the applications of CSP in solid-state rechargeable batteries. Finally, the perspectives about CSP is proposed.

Graphical abstract

Keywords

cold sintering process / processing variables / solid-state rechargeable batteries

Cite this article

Download citation ▾
Tong Yu, Jiang Cheng, Lu Li, Benshuang Sun, Xujin Bao, Hongtao Zhang. Current understanding and applications of the cold sintering process. Front. Chem. Sci. Eng., 2019, 13(4): 654-664 DOI:10.1007/s11705-019-1832-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo J, Guo H, Baker A L, Lanagan M T, Kupp E R, Messing G L, Randall C A. Cold sintering: A paradigm shift for processing and integration of ceramics. Angewandte Chemie International Edition, 2016, 55(38): 11457–11461

[2]

Guo H, Baker A, Guo J, Randall C A. Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics. Journal of the American Ceramic Society, 2016, 99(11): 3489–3507

[3]

Richerson D, Richerson D W, Lee W E. Modern Ceramic Engineering: Properties, Processing, and Use in Design. Roca Rato: CRC Press, 2005, 7–19

[4]

Zhang J, Zhang W, Zhao E, Jacques H J. Study of high-density AZO ceramic target. Materials Science in Semiconductor Processing, 2011, 14(3–4): 189–192

[5]

Han L Y, Shu Y C. Study of large-scale aluminium-doped zinc oxide ceramic targets prepared by slip casting. Advances in Materials Science and Engineering, 2016, 2016: 6410848

[6]

Chou Y H, Chau J L H, Wang W L, Chen C S, Wang S H, Yang C C. Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents. Bulletin of Materials Science, 2011, 34(3): 477–482

[7]

Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Advanced Engineering Materials, 2014, 16(7): 830–849

[8]

Kikuchi M, Kato T, Ohkura K, Ayai N, Fujikami J, Fujino K, Kobayashi S, Ueno E, Yamazaki K, Yamade S, et al. Recent development of drastically innovative BSCCO wire (DI-BISCCO). Physica C: Superconductivity and Its Applications, 2006, 445-448: 717–721

[9]

Gu M L, Xu H, Zhang J, Wei Z, Xu A. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2/TiN tool material. Materials Science and Engineering A, 2012, 545: 1–5

[10]

Jaeger R E, Egerton L. Hot pressing of potassium-sodium niobates. Journal of the American Ceramic Society, 1962, 45(5): 209–213

[11]

Helle A S, Easterling K E, Ashby M F. Hot-isostatic pressing diagrams: New developments. Acta Metallurgica, 1985, 33(12): 2163–2174

[12]

Atkinson H V, Davies S. Fundamental aspects of hot isostatic pressing: An overview. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2000, 31(12): 2981–3000

[13]

Cologna M, Rashkova B, Raj R. Flash sintering of nanograin zirconia in<5 s at 850°C. Journal of the American Ceramic Society, 2010, 93(11): 3556–3559

[14]

Cologna M, Prette A L G, Raj R. Flash-sintering of cubic yttria-stabilized zirconia at 750°C for possible use in SOFC manufacturing. Journal of the American Ceramic Society, 2011, 94(2): 316–319

[15]

Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science, 2006, 41(3): 763–777

[16]

Li J F, Wang K, Zhang B P, Zhang L M. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society, 2006, 89(2): 706–709

[17]

Oghbaei M, Mirzaee O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 2010, 494(1-2): 175–189

[18]

Upadhyaya D D, Ghosh A, Dey G K, Prasad R, Suri A K. Microwave sintering of zirconia ceramics. Journal of Materials Science, 2001, 36(19): 4707–4710

[19]

Jiang J, Chen L, Bai S, Yao Q, Wang Q. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scripta Materialia, 2005, 52(5): 347–351

[20]

Chaim R, Shen Z, Nygren M. Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. Journal of Materials Research, 2004, 19(9): 2527–2531

[21]

Zapata-Solvas E, Bonilla S, Wilshaw P R, Todd R I. Preliminary investigation of flash sintering of SiC. Journal of the European Ceramic Society, 2013, 33(13-14): 2811–2816

[22]

Ohyanagi M, Yamamoto T, Kitaura H, Kodera Y, Ishii T, Munir Z A. Consolidation of nanostructured SiC with disorder-order transformation. Scripta Materialia, 2004, 50(1): 111–114

[23]

Van Dijen F K, Mayer E. Liquid phase sintering of silicon carbide. Journal of the European Ceramic Society, 1996, 16(4): 413–420

[24]

Sciti D, Bellosi A. Effects of additives on densification, microstructure and properties of liquid-phase sintered silicon carbide. Journal of Materials Science, 2000, 35(15): 3849–3855

[25]

Guo H, Guo J, Baker A, Randall C A. Hydrothermal-assisted cold sintering process: A new guidance for low-temperature ceramic sintering. ACS Applied Materials & Interfaces, 2016, 8(32): 20909–20915

[26]

Guo H, Bayer T J M, Guo J, Baker A, Randall C A. Cold sintering process for 8 mol-% Y2O3-stabilized ZrO2 ceramics. Journal of the European Ceramic Society, 2017, 37(5): 2303–2308

[27]

Zhao X, Guo J, Wang K, Herisson De Beauvoir T, Li B, Randall C A. Introducing a ZnO-PTFE (polymer) nanocomposite varistor via the cold sintering process. Advanced Engineering Materials, 2018, 20(7): 1700902

[28]

Guo J, Berbano S S, Guo H, Baker A L, Lanagan M T, Randall C A. Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials. Advanced Functional Materials, 2016, 26(39): 7115–7121

[29]

Liu J A, Li C H, Shan J J, Wu J M, Gui R F, Shi Y S. Preparation of high-density InGaZnO4 target by the assistance of cold sintering. Materials Science in Semiconductor Processing, 2018, 84: 17–23

[30]

Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology.Oxford: Elsevier, 2013, 29

[31]

Rahaman M N. Ceramic Processing. New York: CRC Press, 2017, 375–403

[32]

Hong W B, Li L, Cao M, Chen X M. Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics. Journal of the American Ceramic Society, 2018, 101(9): 4038–4043

[33]

Bouville F, Studart A R. Geologically-inspired strong bulk ceramics made with water at room temperature. Nature Communications, 2017, 8(1): 14655

[34]

Lewin S. The Solubility Product Principle: An Introduction to Its Uses and Limitations. London: Interscience Publishers, 1960, 11–21

[35]

Seo J H, Guo J, Guo H, Verlinde K, Heidary D S B, Rajagopalan R, Randall C A. Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity. Ceramics International, 2017, 43(17): 15370–15374

[36]

Gonzalez-Julian J, Neuhaus K, Bernemann M, Pereira da Silva J, Laptev A, Bram M, Guillon O. Unveiling the mechanisms of cold sintering of ZnO at 250°C by varying applied stress and characterizing grain boundaries by Kelvin probe force microscopy. Acta Materialia, 2018, 144: 116–128

[37]

Bendale P, Venigalla S, Ambrose J R, Verink E D Jr, Adair J H. Preparation of barium titanate films at 55°C by an electrochemical method. Journal of the American Ceramic Society, 1993, 76(10): 2619–2627

[38]

Funahashi S, Guo J, Guo H, Wang K, Baker A L, Shiratsuyu K, Randall C A. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. Journal of the American Ceramic Society, 2017, 100(2): 546–553

[39]

Guo H, Baker A, Guo J, Randall C A. Protocol for ultralow-temperature ceramic sintering: An integration of nanotechnology and the cold sintering process. ACS Nano, 2016, 10(11): 10606–10614

[40]

Wang D, Guo H, Morandi C S, Randall C A, Trolier-McKinstry S. Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics. APL Materials, 2018, 6(1): 016101

[41]

Ma J P, Chen X M, Ouyang W Q, Wang J, Li H, Fang J L. Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering. Ceramics International, 2018, 44(4): 4436–4441

[42]

Hakuta Y, Ura H, Hayashi H, Arai K. Continuous production of BaTiO3 nanoparticles by hydrothermal synthesis. Industrial & Engineering Chemistry Research, 2005, 44(4): 840–846

[43]

Yosenick T. Synthesis and colloidal properties of anisotropic hydrothermal barium titanate. Dissertation for the Doctoral Degree. Pennsylvania: Pennsylvania State University, 2005, 16–20

[44]

Boston R, Guo J, Funahashi S, Baker A L, Reaney I M, Randall C A. Reactive intermedihate phase cold sintering in strontium titanate. RSC Advances, 2018, 8(36): 20372–20378

[45]

Berbano S S, Guo J, Guo H, Lanagan M T, Randall C A. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. Journal of the American Ceramic Society, 2017, 100(5): 2123–2135

[46]

Sato T, Shimada M. Transformation of ceria-doped tetragonal zirconia polycrystals by annealing in water. American Ceramic Society Bulletin, 1985, 64(10): 1382–1384

[47]

Guo H, Bayer T J M, Guo J, Baker A, Randall C A. Current progress and perspectives of applying cold sintering process to ZrO2-based ceramics. Scripta Materialia, 2017, 136: 141–148

[48]

Leng H, Huang J, Nie J, Luo J. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes. Journal of Power Sources, 2018, 391: 170–179

[49]

Neves N, Barros R, Antunes E, Calado J, Fortunato E, Martins R, Ferreira I. Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application. Journal of the European Ceramic Society, 2012, 32(16): 4381–4391

[50]

Munz D, Fett T. Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection. New York: Springer Science & Business Media, 2013, 137–154

[51]

Xu J, Yang Z, Zhang X, Wang H, Xu H. Grain size control in ITO targets and its effect on electrical and optical properties of deposited ITO films. Journal of Materials Science Materials in Electronics, 2014, 25(2): 710–716

[52]

Jing Y, Luo N, Wu S, Han K, Wang X, Miao L, Wei Y. Remarkably improved electrical conductivity of ZnO ceramics by cold sintering and post-heat-treatment. Ceramics International, 2018, 44(16): 20570–20574

[53]

Wang D, Zhou D, Zhang S, Vardaxoglou Y, Whittow W G, Cadman D, Reaney I M. Cold-sintered temperature stable Na0.5Bi0.5MoO4-Li2MoO4 microwave composite ceramics. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2438–2444

[54]

Induja I J, Sebastian M T. Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process. Journal of the European Ceramic Society, 2017, 37(5): 2143–2147

[55]

Induja I J, Sebastian M T. Microwave dielectric properties of cold sintered Al2O3-NaCl composite. Materials Letters, 2018, 211: 55–57

[56]

Guo J, Guo H, Heidary D S B, Funahashi S, Randall C A. Semiconducting properties of cold sintered V2O5 ceramics and Co-sintered V2O5-PEDOT:PSS composites. Journal of the European Ceramic Society, 2017, 37(4): 1529–1534

[57]

Guo J, Pfeiffenberger N, Beese A, Rhoades A, Gao L, Baker A, Wang K, Bolvari A, Randall C A. Cold sintering Na2Mo2O7 ceramic with polyetherimide (PEI) polymer to realize high performance composites and integrated multilayer circuits. ACS Applied Nano Materials, 2018, 1(8): 3837–3844

[58]

Heidary D S B, Guo J, Seo J H, Guo H, Rajagopalan R, Randall C A. Microstructures and electrical properties of V2O5 and carbon-nanofiber composites fabricated by cold sintering process. Japanese Journal of Applied Physics, 2018, 57(2): 025702

[59]

Guo H, Guo J, Baker A, Randall C A. Cold sintering process for ZrO2-based ceramics: Significantly enhanced densification evolution in yttria-doped ZrO2. Journal of the American Ceramic Society, 2017, 100(2): 491–495

[60]

Seo J H, Verlinde K, Guo J, Heidary D S B, Rajagopalan R, Mallouk T E, Randall C A. Cold sintering approach to fabrication of high rate performance binderless LiFePO4 cathode with high volumetric capacity. Scripta Materialia, 2018, 146: 267–271

[61]

Nakaya H, Iwasaki M, Herisson de Beauvoir T, Randall C A. Applying cold sintering process to a proton electrolyte material: CsH2PO4. Journal of the European Ceramic Society, 2019, 39(2-3): 396–401

[62]

Baker A, Guo H, Guo J, Randall C. Utilizing the cold sintering process for flexible-printable electroceramic device fabrication. Journal of the American Ceramic Society, 2016, 99(10): 3202–3204

[63]

Mazaheri M, Zahedi A M, Sadrnezhaad S K. Two-step sintering of nanocrystalline ZnO compacts: Effect of temperature on densification and grain growth. Journal of the American Ceramic Society, 2008, 91(1): 56–63

[64]

Cheng H, Xu X J, Hng H H, Ma J. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceramics International, 2009, 35(8): 3067–3072

[65]

Seiyama T, Yamazoe N, Arai H. Ceramic humidity sensors. Sensors and Actuators, 1983, 4: 85–96

[66]

Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 1996, 143(1): 1–5

[67]

Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P. Recent advances in the development of Li-air batteries. Journal of Power Sources, 2012, 220: 253–263

[68]

Meier K, Laino T, Curioni A. Solid-state electrolytes: Revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations. Journal of Physical Chemistry C, 2014, 118(13): 6668–6679

[69]

Zhang X F, Wang K X, Wei X, Chen J S. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chemistry of Materials, 2011, 23(24): 5290–5292

[70]

Park K I, Song H M, Kim Y, Mho S, Cho W I, Yeo I H. Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochimica Acta, 2010, 55(27): 8023–8029

[71]

Richards W D, Miara L J, Wang Y, Kim J C, Ceder G. Interface stability in solid-state batteries. Chemistry of Materials, 2016, 28(1): 266–273

AI Summary AI Mindmap
PDF (2015KB)

6174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/