Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15

Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang

PDF(2090 KB)
PDF(2090 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (4) : 661-672. DOI: 10.1007/s11705-019-1830-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15

Author information +
History +

Abstract

The utilization of materials with a hierarchical porous structure as multi-functional additives is highly attractive in the preparation of hybrid membranes. In this study, novel hybrid membranes are designed by embedding hierarchical porous Santa Barbara Amorphous 15 (SBA-15) with a dual-pore architecture (micropores and mesopores) for pervaporation desulfurization. The SBA-15 with cylindrical mesopores provides molecular transport expressways to ensure improved permeability, while micropores on the wall have molecular sieving effects that are essential for the enhancement of permselectivity of thiophene molecules. Considering thiophene/n-octane mixture as a model system, the hybrid membrane with embedded 6 wt-% SBA-15 exhibits optimal pervaporation desulfurization performance with a permeation flux of 22.07 kg·m−2·h−1 and an enrichment factor of 6.76. Moreover, the detailed structure and properties of hybrid membranes are systematically characterized. This study demonstrates the immense potential of hierarchical porous materials as additives in membranes to simultaneously increase permeability and permselectivity.

Graphical abstract

Keywords

hybrid membranes / hierarchical porous SBA-15 / sieving effect / pervaporation / desulfurization

Cite this article

Download citation ▾
Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15. Front. Chem. Sci. Eng., 2020, 14(4): 661‒672 https://doi.org/10.1007/s11705-019-1830-3

References

[1]
Xiong J, Zhu W, Li H, Ding W, Chao Y, Wu P, Xun S, Zhang M, Li H. Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry, 2015, 17(3): 1647–1656
CrossRef Google scholar
[2]
Voorde B V, Hezinová M, Lannoeye J, Vandekerkhove A, Marszalek B, Gil B, Beurroies I, Nachtigall P, Vos D D. Adsorptive desulfurization with CPO-27/MOF-74: An experimental and computational investigation. Physical Chemistry Chemical Physics, 2015, 17(16): 10759–10766
CrossRef Google scholar
[3]
Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86(1): 211–263
CrossRef Google scholar
[4]
Lin L, Zhang Y, Kong Y. Recent advances in sulfur removal from gasoline by pervaporation. Fuel, 2009, 88(10): 1799–1809
CrossRef Google scholar
[5]
Wu F, Lin L, Liu H, Liu H, Wang H, Qiu J, Zhang X. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544(2): 342–350
CrossRef Google scholar
[6]
Shao P, Huang R Y M. Polymeric membrane pervaporation. Journal of Membrane Science, 2007, 287(2): 162–179
CrossRef Google scholar
[7]
Deng Y H, Chen J T, Chang C H, Liao K S, Tung K L, Price W E, Yamauchi Y, Wu K C W. A drying-free, water-based process for fabricating mixed-matrix membranes with outstanding pervaporation performance. Angewandte Chemie International Edition, 2016, 55(41): 12793–12796
CrossRef Google scholar
[8]
Wang L, Wang N, Yang H, An Q, Li B, Ji S. Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation. Journal of Membrane Science, 2018, 559: 8–18
CrossRef Google scholar
[9]
Wang M, Wu H, Jin X, Yang C, He X, Pan F, Jiang Z, Wang C, Chen M, Zhang P, Cao X. Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chemical Engineering Science, 2017, 178: 273–283
CrossRef Google scholar
[10]
Bae T H, Long J R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 2013, 6(12): 3565–3569
CrossRef Google scholar
[11]
Yang D, Yang S, Jiang Z, Yu S, Zhang J, Pan F, Cao X, Wang B, Yang J. Polydimethyl siloxane-graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. Journal of Membrane Science, 2015, 487: 152–161
CrossRef Google scholar
[12]
Wang J, Li M, Zhou S, Xue A, Zhang Y, Zhao Y, Zhong J. Controllable construction of polymer/inorganic interface for poly(vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes. Chemical Engineering Science, 2018, 181: 237–250
CrossRef Google scholar
[13]
Dong L X, Huang X C, Wang Z, Yang Z, Wang X M, Tang C Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology, 2016, 166: 230–239
CrossRef Google scholar
[14]
Yu S, Jiang Z, Ding H, Pan F, Wang B, Yang J, Cao X. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481: 73–81
CrossRef Google scholar
[15]
Yu S, Pan F, Yang S, Ding H, Jiang Z, Wang B, Li Z, Cao X. Enhanced pervaporation performance of MIL-101(Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135: 479–488
CrossRef Google scholar
[16]
Choi J H, Jegal J, Kim W N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. Journal of Membrane Science, 2006, 284(1): 406–415
CrossRef Google scholar
[17]
Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003, 211(2): 311–334
CrossRef Google scholar
[18]
Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552
CrossRef Google scholar
[19]
Okumuş E, Gürkan T, Yılmaz L. Effect of fabrication and process parameters on the morphology and performance of a PAN-based zeolite-filled pervaporation membrane. Journal of Membrane Science, 2003, 223(1): 23–38
CrossRef Google scholar
[20]
Pechar T W, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong H K, Cornelius C J. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations. Journal of Membrane Science, 2006, 277(1-2): 195–202
CrossRef Google scholar
[21]
Heiranian M, Farimani A B, Aluru N R. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6(1): 8616
CrossRef Google scholar
[22]
Vatani M, Raisi A, Pazuki G. Mixed matrix membrane of ZSM-5/poly (ether-block-amide)/polyethersulfone for pervaporation separation of ethyl acetate from aqueous solution. Microporous and Mesoporous Materials, 2018, 263: 257–267
CrossRef Google scholar
[23]
Moermans B, Beuckelaer W D, Vankelecom I F J, Ravishankar R, Martens J A, Jacobs P A. Incorporation of nano-sized zeolites in membranes. Chemical Communications, 2000, 24(24): 2467–2468
CrossRef Google scholar
[24]
Bao M, Zhu G, Wang L, Wang M, Gao C. Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization. Desalination, 2013, 309(3): 261–266
CrossRef Google scholar
[25]
Cheng X, Jiang Z, Cheng X, Yang H, Tang L, Liu G, Wang M, Wu H, Pan F, Cao X. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. Journal of Membrane Science, 2018, 555: 146–156
CrossRef Google scholar
[26]
Pan F, Li W, Zhang Y, Sun J, Wang M, Wu H, Jiang Z. Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. AIChE Journal. American Institute of Chemical Engineers, 2019, 65(1):196–206
CrossRef Google scholar
[27]
Vattipalli V, Qi X, Dauenhauer P J, Fan W. Long walks in hierarchical porous materials due to combined surface and configurational diffusion. Chemistry of Materials, 2016, 28(21): 7852–7863
CrossRef Google scholar
[28]
Tseng H H, Itta A K, Weng T H, Li Y L. SBA-15/CMS composite membrane for H2, purification and CO2, capture: Effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 2013, 180(11): 270–279
CrossRef Google scholar
[29]
Weng T H, Tseng H H, Wey M Y. Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane. Journal of Membrane Science, 2011, 369(1): 550–559
CrossRef Google scholar
[30]
Niu Y, Wang H, Zhu X, Song Z, Xie X, Liu X, Han J G Q, Ge Q. Ru supported on zirconia-modified SBA-15 for selective conversion of cellobiose to hexitols. Microporous and Mesoporous Materials, 2014, 198(11): 215–222
CrossRef Google scholar
[31]
Liu W, Li Y, Meng X, Liu G, Hu S, Pan F, Wu H, Jiang Z, Wang B, Li Z, Cao X. Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(11): 3713–3723
CrossRef Google scholar
[32]
Cheng M Y, Pan C J, Hwang B J. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15: Blockage-free nanochannels. Journal of Materials Chemistry, 2009, 19(29): 5193–5200
CrossRef Google scholar
[33]
Ma X J, Yu Y J, Xing J L, Yang T Q, Lam K F, Xue Q S, Albela B, Bonneviot L, Zhang K. Tailoring porosity and dimensionality of Co3O4 nanophase using channel interconnectivity control by steaming of nanocasting SBA-15. Microporous and Mesoporous Materials, 2014, 200: 182–189
CrossRef Google scholar
[34]
Chen L, Zheng Z, Wang J, Wang J, Wang X. Mesoporous SBA-15 end-capped by PEG via L-cystine based linker for redox responsive controlled release. Microporous and Mesoporous Materials, 2014, 185: 7–15
CrossRef Google scholar
[35]
Kruk M, Jaroniec M, Ko C H, Ryoo R. Characterization of the porous structure of SBA-15. Chemistry of Materials, 2000, 12(7): 1961–1968
CrossRef Google scholar
[36]
Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459(1): 244–255
CrossRef Google scholar
[37]
Bondar V I, Freeman B D, Pinnau I. Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B, Polymer Physics, 2015, 37(17): 2463–2475
CrossRef Google scholar
[38]
Nafisi V, Hägg M B. Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer. ACS Applied Materials & Interfaces, 2014, 6(18): 15643–15652
CrossRef Google scholar
[39]
Ding H, Pan F, Mulalic E, Gomaa H, Li W, Yang H, Wu H, Jiang Z, Wang B, Cao X, Zhang P. Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+, and Fe2+ ions co-impregnated carbon nitride. Journal of Membrane Science, 2017, 526: 94–105
CrossRef Google scholar
[40]
Rychlewska K, Kujawski W, Konieczny K. Pervaporative removal of organosulfur compounds (OSCs) from gasoline using PEBA and PDMS based commercial hydrophobic membranes. Chemical Engineering Journal, 2017, 309: 435–444
CrossRef Google scholar
[41]
Pan F, Wang H, Li W, Zhang S, Sun J, Yang H, Wang M, Wang M, Zhou X, Liu X, Constructing rapid diffusion pathways in ultrapermeable hybrid membranes by hierarchical porous nanotubes. Chemical Engineering Science, 2019, 195: 609–618
CrossRef Google scholar
[42]
Pan F, Ding H, Li W, Song Y, Yang H, Wu H, Jiang Z, Wang B, Cao X. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545: 29–37
CrossRef Google scholar
[43]
Mittal N, Nisola G M, Seo J G, Lee S P, Chung W J. Organic radical functionalized SBA-15 as a heterogeneous catalyst for facile oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Journal of Molecular Catalysis A: Chemical, 2015, 404: 106–114
CrossRef Google scholar

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21621004, 21409583, and 21878216), the Program of Introducing Talents of Discipline to Universities (No. B06006), the State Key Laboratory of Organic-Inorganic Composites (No. OIC-201801003) and the Open Project Program of State Key Laboratory of Petroleum Pollution Control (Grant No. PPC2017014), CNPC Research Institute of Safety and Environmental Technology.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-019-1830-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2090 KB)

Accesses

Citations

Detail

Sections
Recommended

/