Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source
Pascal Brault, William Chamorro-Coral, Sotheara Chuon, Amaël Caillard, Jean-Marc Bauchire, Stève Baranton, Christophe Coutanceau, Erik Neyts
Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source
Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.
molecular dynamics / cluster growth / plasma sputtering / nanocatalyst
[1] |
Tao F, Catalysis Series No R S C. 17, Metal Nanoparticles for Catalysis: Advances and Applications. Cambridge: Royal Society of Chemistry, 2014
|
[2] |
Brault P. Review of low pressure plasma processing of proton exchange membrane fuel cell electrocatalysts. Plasma Processes and Polymers, 2016, 13: 10–18
|
[3] |
Wegner K, Piseri P, Vahedi Tafreshi H, Milani P. Cluster beam deposition: A tool for nanoscale science and technology. Journal of Physics. D, Applied Physics, 2006, 39: R439–R459
|
[4] |
Marek A, Valter J, Kadlec S, Vyskočil J. Gas aggregation nanocluster source—reactive sputter deposition of copper and titanium nanoclusters. Surface and Coatings Technology, 2011, 205: S573–S576
|
[5] |
Ayesh A I. Production of metal-oxide nanoclusters using inert-gas condensation technique. Thin Solid Films, 2017, 636: 207–213
|
[6] |
Caillard A, Cuynet S, Lecas T, Andreazza P, Mikikian M, Thomann A L, Brault P. PdPt catalyst synthesized using a gas aggregation source and magnetron sputtering for fuel cell electrodes. Journal of Physics. D, Applied Physics, 2015, 48: 475302
|
[7] |
Kylián O, Valeš V, Polonskyi O, Pešička J, Čechvala J, Solař P, Choukourov A, Slavínská D, Biederman H. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Materials Letters, 2012, 79: 229–231
|
[8] |
Watanabe Y, Wu X, Hirata H, Isomura N. Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces. Catalysis Science & Technology, 2011, 1: 1490–1495
|
[9] |
Quesnel E, Pauliac-Vaujour E, Muffato V. Modeling metallic nanoparticle synthesis in a magnetron-based nanocluster source by gas condensation of a sputtered vapor. Journal of Applied Physics, 2010, 107: 054309
|
[10] |
Ayesh A I, Thaker S, Qamhieh N, Ghamlouche H. Size-controlled Pd nanocluster grown by plasma gas-condensation method. Journal of Nanoparticle Research, 2011, 13: 1125–1131
|
[11] |
Drabik M, Choukourov A, Artemenko A, Polonskyi O, Kylian O, Kousal J, Nichtova L, Cimrova V, Slavinska D, Biederman H. Structure and composition of titanium nanocluster films prepared by a gas aggregation cluster source. Journal of Physical Chemistry C, 2011, 115: 20937–20944
|
[12] |
Gojdka B, Hrkac V, Strunskus T, Zaporojtchenko V, Kienle L, Faupel F. Study of cobalt clusters with very narrow size distribution deposited by high-rate cluster source. Nanotechnology, 2011, 22: 465704
|
[13] |
Bouchat V, Feron O, Gallez B, Masereel B, Michiels C, Vander Borght T, Lucas S. Carbon nanoparticles synthesized by sputtering and gas condensation inside a nanocluster source of fixed dimension. Surface and Coatings Technology, 2011, 205: S577–S581
|
[14] |
Ten Brink G H, Krishnan G, Kooi B J, Palasantzas G. Copper nanoparticle formation in a reducing gas environment. Journal of Applied Physics, 2014, 116: 104302
|
[15] |
Koch S A, Palasantzas G, Vystavel T, De Hosson J Th M, Binns C, Louch S. Magnetic and structural properties of Co nanocluster thin films. Physical Review. B, 2005, 71: 085410
|
[16] |
Spadaro M C, D’Addato S, Gasperi G, Benedetti F, Lueches P, Grillo V, Bertoni G, Valeri S. Morphology, structural properties and reducibility of size-selected CeO2 –l nanoparticle films. Beilstein Journal of Nanotechnology, 2015, 6: 60–67
|
[17] |
D’Addato S, Spadar M C, Luches P, Grillo V, Frabboni S, Valeri S, Ferretti A M, Capetti E, Ponti A. Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties. Applied Surface Science, 2014, 306: 2–6
|
[18] |
Polonskyi O, Ahadi A M, Tilo P, Fujioka K, Abraham J W, Vasiliauskaite E, Hinz A, Strunskus T, Wolf S, Bonitz M,
|
[19] |
Brault P, Neyts E. Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering. Catalysis Today, 2015, 256: 3–12
|
[20] |
Neyts P, Brault P. Molecular dynamics simulations for plasma surface interactions. Plasma Processes and Polymers, 2017, 14: 1600145
|
[21] |
Liang T, Shin Y K, Cheng Y T, Yilmaz D E, Vishnu K G, Verners O, Zou C, Phillpot S R, Sinnott S B, van Duin A C T. Reactive Potentials for advanced atomistic simulations. Annual Review of Materials Research, 2013, 43: 109–129
|
[22] |
Hu W, Li G X, Chen J J, Huang F J, Wu Y, Yuan S D, Zhong L, Chen Y Q. Enhanced catalytic performance of a PdO catalyst prepared via a two-step method of in situ reduction-oxidation. Chemical Communications (Cambridge), 2017, 53: 6160–6163
|
[23] |
Huang F, Chen J, Hu W, Li G, Wu Y, Yuan S, Zhong L, Chen Y. Pd or PdO: Catalytic active site of methane oxidation operated close to stoichiometric air-to-fuel for natural gas vehicles. Applied Catalysis B: Environmental, 2017, 219: 73–81
|
[24] |
Liang X, Liu C J, Kuai P. Selective oxidation of glucose to gluconic acid over argon plasma reduced Pd/Al2O3. Green Chemistry, 2008, 10: 1318–1322
|
[25] |
Simões M, Baranton S, Coutanceau C. Electrochemical valorization of glycerol. ChemSusChem, 2012, 5: 2106–2124
|
[26] |
Zalineeva A, Padilla M, Martinez U, Serov A, Artyushkova K, Baranton S, Coutanceau C, Atanassov P B. Self-supported Pd-Bi catalysts for the electrooxidation of glycerol in alkaline media. Journal of the American Chemical Society, 2014, 136: 3937–3945
|
[27] |
Song S, Wang K, Yan L, Brouzgouc A, Zhang Y, Wang Y, Tsiakaras P. Ceria promoted Pd/C catalysts for glucose electrooxidation in alkaline media. Applied Catalysis B: Environmental, 2015, 176-177: 233–239
|
[28] |
Senftle T P, Meyer R J, Janik M J, van Duin A C T. Development of a ReaxFF potential for Pd/O and application to palladium oxide formation. Journal of Chemical Physics, 2013, 139: 044109
|
[29] |
Graves D, Brault P. Molecular dynamics for low temperature plasma-surface interaction studies. Journal of Physics. D, Applied Physics, 2009, 42: 194011
|
[30] |
Brault P. Multiscale molecular dynamics simulation of plasma processing: Application to plasma sputtering. Frontiers in Physics, 2018, 6: 59
|
[31] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117: 1–19
|
/
〈 | 〉 |