Safety evaluation of microbial pesticide (HaNPV) based on PCR method

Miao Zhao , Shufei Li , Qinghong Zhou , Dianming Zhou , Ning He , Zhiyong Qian

Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (2) : 377 -384.

PDF (1175KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (2) : 377 -384. DOI: 10.1007/s11705-018-1777-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Safety evaluation of microbial pesticide (HaNPV) based on PCR method

Author information +
History +
PDF (1175KB)

Abstract

Microbial pesticides can prevent and control diseases and pests of crops, and has become one of the important measures to ensure food and environmental safety. However, the potential harm of microbial pesticides to humans and animals is a serious concern at home and abroad. In this paper, we have investigated the infectivity and pathogenicity of a representative of viral microbial pesticides, helicoverpa armigera nuclear polyhedrosis virus (HaNPV), by specific and highly sensitive polymerase chain reaction technology. The results show that HaNPV can be gradually cleared in a short time after getting into blood of experimental rats, and does not infect other tissues or organs of animals; also indicate that the test subjects are not infectious to experimental rats after intravenous injection of HaNPV. Our method has good specificity and repeatability, and could provide an important reference for establishment of infectivity and pathogenicity detection methods for viral microbial pesticides in future.

Graphical abstract

Keywords

microbial pesticides / HaNPV / acute intravenous injection / infectivity / pathogenicity

Cite this article

Download citation ▾
Miao Zhao, Shufei Li, Qinghong Zhou, Dianming Zhou, Ning He, Zhiyong Qian. Safety evaluation of microbial pesticide (HaNPV) based on PCR method. Front. Chem. Sci. Eng., 2019, 13(2): 377-384 DOI:10.1007/s11705-018-1777-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Duke S O. Comparing conventional and biotechnology-based pest management. Journal of Agricultural and Food Chemistry, 2011, 59(11): 5793–5798

[2]

Seiber J N, Coats J, Duke S O, Gross A D. Biopesticides: State of the art and future opportunities. Journal of Agricultural and Food Chemistry, 2014, 62(48): 11613–11619

[3]

Lenteren J C V, Bolckmans K, Köhl J, Ravensberg W J, Urbaneja A. Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl, 2018, 63(1): 39–59

[4]

Lacey L A, Grzywacz D, Shapiro-Ilan D I, Frutos R, Brownbridge M, Goettel M S. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 2015, 132(11): 1–41

[5]

Czaja K, Góralczyk K, Struciński P, Hernik A, Korcz W, Minorczyk M, Łyczewska M, Ludwicki J K. Biopesticides—towards increased consumer safety in the European Union. Pest Management Science, 2015, 71(1): 3–6

[6]

Isman M B. A renaissance for botanical insecticides. Pest Management Science, 2015, 71(12): 1587–1590

[7]

Lamichhane J R, Dachbrodt-Saaydeh S, Kudsk P, Messéan A. Toward a reduced reliance on conventional pesticides in European agriculture. Plant Disease, 2016, 100(1): 10–24

[8]

Vivan L M, Torres J B, Fernandes P L. Activity of selected formulated biorational and synthetic insecticides against larvae of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2016, 110(1): 118–126

[9]

Melo A L D A, Soccol V T, Soccol C R. Bacillus thuringiensis: mechanism of action, resistance, and new applications: A review. Critical Reviews in Biotechnology, 2016, 36(2): 317–326

[10]

Duarte R T, Gonçalves K C, Espinosa D J L, Moreira L F, De Bortoli S A, Humber R A, Polanczyk R A. Potential of entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae) and compatibility with chemical insecticides. Journal of Economic Entomology, 2016, 109(2): 594–601

[11]

Lovett B, St Leger R J. Genetically engineering better fungal biopesticides. Pest Management Science, 2018, 74(4): 781–789

[12]

Vlak J M. Microbial and viral pesticides. European Journal of Plant Pathology, 1984, 90(4): 153–154

[13]

Agathos S N. Scale-up and optimizing the in vitro growth of insect cells for production of recombinant proteins and viral pesticides. In Vitro Cellular & Developmental Biology, 2004, 40(5): 13A

[14]

Carpio C, Dangles O, Dupas S, Léry X, López-Ferber M, Orbe K, Páez D, Rebaudo F, Santillán A, Yangari B, Zeddam J L. Development of a viral biopesticide for the control of the Guatemala potato tuber moth Tecia solanivora. Journal of Invertebrate Pathology, 2013, 112(2): 184–191

[15]

Ignoffo C M. The first viral pesticide: Past, present, and future. Journal of Industrial Microbiology & Biotechnology, 1999, 22(4-5): 407–417

[16]

Ghosh S, Bhattacharya D K. Optimization in microbial pest control: An integrated approach. Applied Mathematical Modelling, 2010, 34(5): 1382–1395

[17]

Yang M M, Li M L, Zhang Y A, Wang Y Z, Qu L J, Wang Q H, Ding J Y. Baculoviruses and insect pests control in China. African Journal of Microbiological Research, 2012, 6(2): 214–218

[18]

Haase S, Sciocco-Cap A, Romanowski V. Baculovirus insecticides in Latin America: Historical overview, current status and future perspectives. Viruses, 2015, 7(5): 2230–2267

[19]

Myers J H, Cory J S. Ecology and evolution of pathogens in natural populations of Lepidoptera. Evolutionary Applications, 2016, 9(1): 231–247

[20]

Cowan P, Bulach D, Goodge K, Robertson A, Tribe D E. Nucleotide sequence of the polyhedrin gene region of Helicoverpa zea single nucleocapsid nuclear polyhedrosis virus: Placement of the virus in lepidopteran nuclear polyhedrosis virus group II. Journal of General Virology, 1994, 75(11): 3211–3218

[21]

Lange M, Wang H L, Hu Z H, Jehle J A. Towards a molecular identification and classification system of lepidopteran-specific baculoviruses. Virology, 2004, 325(1): 36–47

[22]

Ravikumar G, Urs S R, Prakash N B V, Rao C G P, Vardhana K V. Development of a multiplex polymerase chain reaction for the simultaneous detection of microsporidians, nucleopolyhedrovirus, and densovirus infecting silkworms. Journal of Invertebrate Pathology, 2011, 107(3): 193–197

[23]

Takatsuka J, Okuno S, Nakai M, Kunimi Y. Genetic and phenotypic comparisons of viral genotypes from two nucleopolyhedroviruses interacting with a common host species, Spodoptera litura (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology, 2016, 139(9): 42–49

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1175KB)

1949

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/