Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study

Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz

PDF(2602 KB)
PDF(2602 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (4) : 579-594. DOI: 10.1007/s11705-018-1770-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study

Author information +
History +

Abstract

The room temperature synthesis of ZIF-8 micro- and nano-particles was investigated using a mixed methanol-water solvent system. ZIF-8 particles of good quality and high crystallinity were obtained. Response surface methodology was used to determine the effect of the synthesis conditions on the ZIF-8 yield, particle size distribution, and mean particle size. The ligand/metal salt molar ratio followed by the amount of sodium formate (the deprotonating agent) and then the amount of water (i.e., the composition of the mixed solvent) respectively had the largest effects on both the ZIF-8 yield and particle size. Results showed that mixing of solvents with different strengths in producing ZIF-8 crystals is a practical method to size-controlled synthesis of ZIF-8 particles. This method is more favorable for industrial-scale ZIF-8 synthesis than using excess amounts of ligands or chemical additives (like sodium formate). In addition, ZIF-8 samples with different mean particle sizes (100, 500, and 1000 nm) were used for CO adsorption and the mid-sized ZIF-8 particles had the highest adsorption capacity.

Graphical abstract

Keywords

metal organic frameworks / zeolitic imidazolate frameworks / ZIF-8 / response surface methodology / Box Behnken design / CO adsorption

Cite this article

Download citation ▾
Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study. Front. Chem. Sci. Eng., 2020, 14(4): 579‒594 https://doi.org/10.1007/s11705-018-1770-3

References

[1]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149): 1–12
[2]
Farrusseng D. Metal-Organic Frameworks: Applications from Catalysis to Gas Storage. Hoboken:Weinheim Wiley-VCH, 2011
[3]
Cheong V F, Moh P Y. Recent advancement in metal–organic framework: Synthesis, activation, functionalisation, and bulk production. Materials Science and Technology, 2018, 34(9): 1025–1045
[4]
Yan D, Lloyd G O, Delori A, Jones W, Duan X. Tuning fluorescent molecules by inclusion in a metal-organic framework: An experimental and computational study. ChemPlusChem, 2012, 77(12): 1112–1118
[5]
Kurmoo M. Magnetic metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1353–1379
[6]
Zhang C F, Qiu L G, Ke F, Zhu Y J, Yuan Y P, Xu G S, Jiang X. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(45): 14329–14334
[7]
Wu Y N, Zhou M, Li S, Li Z, Li J, Wu B, Li G, Li F, Guan X. Magnetic metal-organic frameworks: g-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small, 2014, 10(14): 2737–2962
[8]
Lin K A, Chang H A, Hsu C J. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC Advances, 2015, 5(41): 32520–32530
[9]
Kayal S, Sun B, Chakraborty A. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy, 2015, 91: 772–781
[10]
Ren J, Musyoka N M, Langmi H W, North B C, Mathe M, Kang X, Liao S. Hydrogen storage in Zr-fumarate MOF. International Journal of Hydrogen Energy, 2015, 40(33): 10542–10546
[11]
Jusoh N, Yeong Y F, Cheong W L, Lau K K, Shariff A M. Facile fabrication of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 nanofillers for CO2 capture. Journal of Industrial and Engineering Chemistry, 2016, 44: 164–173
[12]
Erucar I, Keskin S. Computational assessment of MOF membranes for CH4/H2 separations. Journal of Membrane Science, 2016, 514: 313–321
[13]
Adatoz E, Avci A K, Keskin S. Opportunities and challenges of MOF-based membranes in gas separations. Separation and Purification Technology, 2015, 152: 207–237
[14]
Melgar V M A, Ahn H, Kim J, Othman M R. Highly selective micro-porous ZIF-8 membranes prepared by rapid electrospray deposition. Journal of Industrial and Engineering Chemistry, 2015, 21: 575–579
[15]
Sarfraz M, Ba-Shammakh M. Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases. Journal of Industrial and Engineering Chemistry, 2016, 36: 154–162
[16]
Wang Y, Li C, Meng F, Lv S, Guo J, Liu X, Wang C, Ma Z. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Frontiers of Chemical Science and Engineering, 2014, 8(3): 340–345
[17]
Dang G H, Lam H Q, Nguyen A T, Le D T, Truong T, Phan N T S. Synthesis of indolizines through aldehyde-amine-alkyne couplings using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst. Journal of Catalysis, 2016, 337: 167–176
[18]
Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews, 2014, 43(16): 6011–6061
[19]
Hu Y, Zheng S, Zhang F. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541
[20]
Li Q L, Wang J P, Liu W C, Zhuang X Y, Liu J Q, Fan G L, Li B H, Lin W N, Man J H. A new (4,8)-connected topological MOF as potential drug delivery. Inorganic Chemistry Communications, 2015, 55: 8–10
[21]
Singco B, Liu L, Chen Y, Shih Y H, Huang H Y, Lin C H. Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 223: 254–260
[22]
Barea E, Montoro C, Navarro J A R. Toxic gas removal—metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chemical Society Reviews, 2014, 43(16): 5419–5430
[23]
Hosseini M S, Zeinali S, Sheikhi M H. Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sensors and Actuators. B, Chemical, 2016, 230: 9–16
[24]
Li W, Wu X, Han N, Chen J, Qian X, Deng Y, Tang W, Chen Y. MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sensors and Actuators. B, Chemical, 2016, 225: 158–166
[25]
Wang K M, Du L, Ma Y L, Zhao Q H. Selective sensing of 2,4,6-trinitrophenol and detection of the ultralow temperature based on a dual-functional MOF as a luminescent sensor. Inorganic Chemistry Communications, 2016, 68: 45–49
[26]
Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016, 307: 361–381
[27]
Zhang Y, Niu Y B, Liu T, Li Y T, Wang M Q, Hou J, Xu M. A nickel-based metal-organic framework: A novel optimized anode material for Li-ion batteries. Materials Letters, 2015, 161: 712–715
[28]
Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191
[29]
Tu M, Wiktor C, Rosler C, Fischer R A. Rapid room temperature syntheses of zeoliticimidazolate framework (ZIF) nanocrystals. Chemical Communications, 2014, 50: 13258–13260
[30]
Munn A S, Dunne P W, Tang S V Y, Lester E H. Large-scale continuous hydrothermal production and activation of ZIF-8. Chemical Communications, 2015, 51: 12811–12814
[31]
Cravillon J, Schröder C A, Bux H, Rothkirch A, Caro J, Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 2012, 14(2): 492–498
[32]
Cho H Y, Kim J, Kim S N, Ahn W S. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, 2013, 169: 180–184
[33]
Friščić T, Halasz I, Beldon P J, Belenguer A M, Adams F, Kimber S A J, Honkimäki V, Dinnebier R E. Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chemistry, 2013, 5: 66–73
[34]
Joaristi A M, Alcañiz J J, Crespo P S, Kapteijn F, Gascon J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth & Design, 2012, 12(7): 3489–3498
[35]
Shi Q, Chen Z, Song Z, Li J, Dong J. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angewandte Chemie International Edition, 2010, 50(3): 672–675
[36]
Liu W, Zhao Y, Zeng C, Wang C, Serra C A, Zhang L. Microfluidic preparation of yolk/shell ZIF-8/alginate hybrid microcapsules from Pickering emulsion. Chemical Engineering Journal, 2017, 307: 408–417
[37]
Butova V V, Budnik A P, Bulanova E A, Soldatov A V. New microwave-assisted synthesis of ZIF-8. Mendeleev Communications, 2016, 26(1): 43–44
[38]
Schejn A, Balan L, Falk V, Aranda L, Medjahdi G, Schneider R. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 2014, 16(21): 4493–4500
[39]
Zhou J, Yu X, Fan X, Wang X, Li H, Zhang Y, Li W, Zheng J, Wang B, Li X. The impact of the particle size of a metal-organic framework for sulfur storage in Li–S batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(16): 8272–8275
[40]
Linder-Patton O M, Bloch W M, Coghlan C J, Sumida K, Kitagawa S, Furukawa S, Doonana C J, Sumby C J. Particle size effects in the kinetic trapping of a structurally-locked form of a flexible MOF CrystEngComm, 2016, 18(22): 4172–4179
[41]
Nordin N A H M, Ismail A F, Mustafa A, Murali R S, Matsuura T. The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane. RSC Advances, 2014, 4(94): 52530–52541
[42]
Ban Y, Li Y, Liu X, Peng Y, Yang W. Solvothermal synthesis of mixed-ligand metal-organic framework ZIF-78 with controllable size and morphology. Microporous and Mesoporous Materials, 2013, 173: 29–36
[43]
Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 2011, 23(8): 2130–2141
[44]
Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Pirngruber G D. Synthesis and adsorption properties of ZIF-76 isomorphs. Microporous and Mesoporous Materials, 2012, 153: 1–7
[45]
Polyzoidis A, Altenburg T, Schwarzer M, Loebbecke S, Kaskel S. Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size. Chemical Engineering Journal, 2016, 283: 971–977
[46]
Jian M, Liu B, Liu R, Qu J, Wang H, Zhang X. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances, 2015, 5(60): 48433–48441
[47]
Chi W S, Hwang S, Lee S J, Park S, Bae Y S, Ryu D Y, Kim J H, Kim J. Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture. Journal of Membrane Science, 2015, 495: 479–488
[48]
Cravillon J, Münzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials, 2009, 21(8): 1410–1412
[49]
Zhang C, Lively R P, Zhang K, Johnson J R, Karvan O, Koros W J. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. Journal of Physical Chemistry Letters, 2012, 3(16): 2130–2134
[50]
Bezerra M A, Erthal R, Eliane S, Oliveira P, Silveira L, Luciane V, Escaleira A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5): 965–977
[51]
Talib N A, Salam F, Yusof N A, Ahmad S A A, Sulaiman Y. Optimization of peak current of poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube using response surface methodology/central composite design. RSC Advances, 2017, 7(18): 11101–11110
[52]
Nordin N A H M, Ismail A F, Mustafa A, Goh P S, Rana D, Matsuura T. Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine. RSC Advances, 2014, 4(63): 33292–33300
[53]
James J B, Lin Y S. Kinetics of ZIF-8 thermal decomposition in inert, oxidizing and reducing environments. Journal of Physical Chemistry C, 2016, 120(26): 14015–14026
[54]
Lai L S, Yeong Y F, Lau K K, Azmi M S. Zeolite imidazole frameworks membranes for CO2/CH4 separation from natural gas: A review. Journal of Applied Sciences (Faisalabad), 2014, 14(11): 1161–1167
[55]
Beh J J, Lim J K, Ng E P, Ooi B S. Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): From the perspective of reaction kinetics and thermodynamics of nucleation. Materials Chemistry and Physics, 2018, 216: 393–401
[56]
Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters, 2012, 41: 1337–1339
[57]
Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794–1801
[58]
Li C P, Du M. Role of solvents in coordination supramolecular systems. Chemical Communications, 2011, 47(21): 5958–5972
[59]
Bustamante E L, Fernández J L, Zamaro J M. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. Journal of Colloid and Interface Science, 2014, 424: 37–43
[60]
Hadi A, Karimi-Sabet J, Moosavian S M A, Ghorbanian S. Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach. Journal of Supercritical Fluids, 2016, 107: 92–105
[61]
Fan X, Zhou J, Wang T, Zheng J, Li X. Opposite particle size effects on the adsorption kinetics of ZIF-8 for gaseous and solution adsorbates. RSC Advances, 2015, 5: 58595–58599
[62]
Mondloch J E, Karagiaridi O, Farha O K, Hupp J T. Activation of metal-organic framework materials. CrystEngComm, 2013, 15: 9258–9264
[63]
Casco M E, Cheng Y Q, Daemen L L, Fairen-Jimenez D, Ramos-Fernández E V, Silvestre-Albero A J R C J. Gate-opening effect in ZIF-8: The first experimental proof using inelastic neutron scattering. . Chemical Communications (Cambridge), 2016, 52: 3639–3642

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705–018–1770–3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2602 KB)

Accesses

Citations

Detail

Sections
Recommended

/