Nanocomposite materials in orthopedic applications

Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar

PDF(2445 KB)
PDF(2445 KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (1) : 1-13. DOI: 10.1007/s11705-018-1764-1
REVIEW ARTICLE

Nanocomposite materials in orthopedic applications

Author information +
History +

Abstract

This chapter is an introduction to nanocomposite materials and its classifications with emphasis on orthopedic application. It covers different types of matrix nanocomposites including ceramics, metal, polymer and natural-based nanocomposites with the main features and applications in the orthopedic. In addition, it presents structure, composition, and biomechanical features of bone as a natural nanocomposite. Finally, it deliberately presents developing methods for nanocomposites bone grafting.

Graphical abstract

Keywords

nanocomposite materials / orthopedic applications / bone grafting nanocomposites / nanocomposites classification

Cite this article

Download citation ▾
Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar. Nanocomposite materials in orthopedic applications. Front. Chem. Sci. Eng., 2019, 13(1): 1‒13 https://doi.org/10.1007/s11705-018-1764-1

References

[1]
Henrique P, Camargo C, Satyanarayana K G, Wypych F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 2009, 12(1): 1–39
CrossRef Google scholar
[2]
Mittal V. Bio-nanocomposites: Future high-value materials. In: Nanocomposites with Biodegradable Polymers: Synthesis, Properties, and Future perspectives. Oxford, 2011, 1–27
[3]
Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212
CrossRef Google scholar
[4]
Lau A K T, Bhattacharyya D, Ling C H Y. Nanocomposites for engineering applications. Journal of Nanomaterials, 2009, 2009: 1
CrossRef Google scholar
[5]
Tjong S C. Polymer Composites With Carbonaceous Nanofillers: Properties and Applications. Hoboken: Wiley, 2012, 1–388
[6]
Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Composites Science and Technology, 2005, 65(15-16): 2385–2406
CrossRef Google scholar
[7]
Johnell O. The socioeconomic burden of fractures: Today and in the 21st century. American Journal of Medicine, 1997, 103(2): 20S–26S
CrossRef Google scholar
[8]
Jones L C, Topoleski L D T, Tsao A K. Biomaterials in orthopaedic implants. In: Mechanical Testing of Orthopaedic Implants. Amsterdam: Elsevier, 2017, 17–32
[9]
Liu H, Webster T J. Bioinspired nanocomposites for orthopedic applications. Nanotechnology for the regeneration of hard and soft tissues. Singapore: World Scientific, 2007, 1–52
[10]
Gu Y, Chen X, Lee J H, Monteiro D A, Wang H, Lee W Y. Inkjet printed antibiotic-and calcium- eluting bioresorbable nanocomposite micropatterns for orthopedic implants. Acta Biomaterialia, 2012, 8(1): 424–431
CrossRef Google scholar
[11]
Chan C K, Kumar T S S, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Future Nanomedicine, 2006, 1(2): 177–188
CrossRef Google scholar
[12]
Okpala C C. Nanocomposites–an overview. International Journal of Engineering Research and Development, 2013, 8(11): 17–23
[13]
Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z. Polymer nanocomposites for energy storage, energy saving, and anticorrosion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 14929–14941
CrossRef Google scholar
[14]
Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri M L, Agostiano A, Comparelli R. Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 2017, 281: 85–100
CrossRef Google scholar
[15]
Duan X, Deng J, Wang X, Liu P. Preparation of rGO/G/PANI ternary nanocomposites as high performance electrode materials for supercapacitors with spent battery powder as raw material. Materials & Design, 2017, 129: 135–142
CrossRef Google scholar
[16]
Tai W P, Kim Y S, Kim J G. Fabrication and magnetic properties of Al2O3/Co nanocomposites. Materials Chemistry and Physics, 2003, 82(2): 396–400
CrossRef Google scholar
[17]
Russo T, Gloria A, De Santis R, D’Amora U, Balato G, Vollaro A, Oliviero O, Improta G, Triassi M, Ambrosio L. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. Bioactive Materials, 2017, 2(3): 156–161
CrossRef Google scholar
[18]
Duc N D, Seung-Eock K, Quan T Q, Long D D, Anh V M. Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell. Composite Structures, 2018, 184: 1137–1144
CrossRef Google scholar
[19]
Khalid A, Abdel-Karim A, Ali Atieh M, Javed S, McKay G. PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Separation and Purification Technology, 2018, 190: 165–176
CrossRef Google scholar
[20]
Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212
CrossRef Google scholar
[21]
Seo W J, Sung Y T, Kim S B, Lee Y B, Choe K H, Choe S H, Sung J Y, Kim W N. Effects of ultrasound on the synthesis and properties of polyurethane foam/clay nanocomposites. Journal of Applied Polymer Science, 2006, 102(4): 3764–3773
CrossRef Google scholar
[22]
Vallet-Regí M, González-Calbet J M. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 2004, 32(1–2): 1–31
CrossRef Google scholar
[23]
Ramay H R R, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials, 2004, 25(21): 5171–5180
CrossRef Google scholar
[24]
Swain S K, Gotman I, Unger R, Gutmanas E Y. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility. Materials Science and Engineering C, 2017, 78: 88–95
CrossRef Google scholar
[25]
Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 2012, 52(6): 1636–1653
CrossRef Google scholar
[26]
Porwal H, Saggar R. Ceramic Matrix Nanocomposites. In: Comprehensive Composite Materials. Amsterdam: Elsevier, 2017, 138–161
[27]
Gupta P, Kumar D, Quraishi M A, Parkash O. Metal matrix nanocomposites and their application in corrosion control. Berlin: Springer, 2016, 231–246
[28]
Kheimehsari H, Izman S, Shirdar M R. Effects of HA-coating on the surface morphology and corrosion behavior of a Co-Cr-based implant in different conditions. Journal of Materials Engineering and Performance, 2015, 24(6): 2294–2302
CrossRef Google scholar
[29]
Taheri M M, Kadir M R A, Shokuhfar T, Hamlekhan A, Assadian M, Shirdar M R, Mirjalili A. Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceramics International, 2015, 41(8): 9867–9872
CrossRef Google scholar
[30]
Balani K, Chen Y, Harimkar S P, Dahotre N B, Agarwal A. Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomaterialia, 2007, 3(6): 944–951
CrossRef Google scholar
[31]
Shirdar M R, Taheri M M. Surface morphology and corrosion behavior of hydroxyapatite-coated Co-Cr implant: Effect of sintering conditions. Journal of the Minerals Metals & Materials Society, 2017, 69(12): 2831–2837
CrossRef Google scholar
[32]
Taheri M M, Kadir M R A, Shokuhfar T, Hamlekhan A, Shirdar M R, Naghizadeh F. Fluoridated hydroxyapatite nanorods as novel fillers for improving mechanical properties of dental composite: Synthesis and application. Materials & Design, 2015, 82: 119–125
CrossRef Google scholar
[33]
Dorozhkin S. Bioceramics of calcium orthophosphates. Biomaterials, 2010, 31(7): 1465–1485
CrossRef Google scholar
[34]
Sivaperumal V R, Mani R, Nachiappan M S, Arumugam K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Materials Characterization, 2017, 134: 416–421
CrossRef Google scholar
[35]
Singh M K, Shokuhfar T, Gracio J J de A, de Sousa A C M, Fereira J M D F, Garmestani H, Ahzi S. Hydroxyapatite modified with carbon-nanotube-reinforced poly(methyl methacrylate): A nanocomposite material for biomedical applications. Advanced Functional Materials, 2008, 18(5): 694–700
CrossRef Google scholar
[36]
Farrokhi-Rad M. Electrophoretic deposition of fiber hydroxyapatite/titania nanocomposite coatings. Ceramics International, 2017, 44(1): 622–630
CrossRef Google scholar
[37]
Shirdar M R, Sudin I, Taheri M M, Keyvanfar A, Yusop M Z M. A novel hydroxyapatite composite reinforced with titanium nanotubes coated on Co–Cr-based alloy. Vacuum, 2015, 122: 82–89
CrossRef Google scholar
[38]
Henderson H B, Rios O, Bryan Z L, Heitman C P K, Ludtka G M, Mackiewicz-Ludtka G, Melin A M, Manuel M V. Magneto-acoustic mixing technology: A novel method of processing metal-matrix nanocomposites. Advanced Engineering Materials, 2014, 16(9): 1078–1082
CrossRef Google scholar
[39]
Li X, Xu J. Metal matrix nanocomposites. In: Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018, 97–137
[40]
Janas D, Liszka B. Copper matrix nanocomposites based on carbon nanotubes or graphene. Materials Chemistry Frontiers, 2018, 2(1): 22–35
CrossRef Google scholar
[41]
Hassanzadeh-Aghdam M K, Mahmoodi M J. A comprehensive analysis of mechanical characteristics of carbon nanotube-metal matrix nanocomposites. Materials Science and Engineering A, 2017, 701: 34–44
CrossRef Google scholar
[42]
Yahata C, Mochizuki A. Platelet compatibility of magnesium alloys. Materials Science and Engineering C, 2017, 78: 1119–1124
CrossRef Google scholar
[43]
Witte F, Eliezer A. Biodegradable metals. In: Degradation of Implant Materials. Berlin: Springer, 2012, 93–110
[44]
Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701
CrossRef Google scholar
[45]
Khalajabadi S Z, Abu A B H, Ahmad N, Kadir M R A, Ismail A F, Nasiri R, Haider W, Redzuan N B H. Biodegradable Mg/HA/TiO2 nanocomposites coated with MgO and Si/MgO for orthopedic applications: A study on the corrosion, surface characterization, and biocompatability. Coatings, 2017, 7(7): 154
CrossRef Google scholar
[46]
Zhu C, Lv Y, Qian C, Qian H, Jiao T, Wang L, Zhang F. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing. Scientific Reports, 2016, 6(1): 38875
CrossRef Google scholar
[47]
Zhu C, Lv Y, Qian C, Ding Z, Jiao T, Gu X, Lu E, Wang L, Zhang F. Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing. International Journal of Nanomedicine, 2018, 13: 1881–1898
CrossRef Google scholar
[48]
De Journett T J, Spicer J B. Synthesis and patterning of polymer matrix nanocomposites using femtosecond laser-assisted processing. Materials Research Society, 2012, 1455, mrss12-1455-ii02-03
[49]
Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Materials Science and Engineering C, 2016, 60: 195–203
CrossRef Google scholar
[50]
Dubey S P, Thakur V K, Krishnaswamy S, Abhyankar H A, Marchante V, Brighton J L. Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 2017, 146: 655–663
CrossRef Google scholar
[51]
Palmero P. Ceramic-polymer nanocomposites for bone-tissue regeneration. In: Nanocomposites for Musculoskeletal Tissue Regeneration. Amsterdam: Elsevier, 2016, 331–367
[52]
Hule R A, Pochan D J. Polymer nanocomposites for biomedical applications. MRS Bulletin, 2007, 32(4): 354–358
CrossRef Google scholar
[53]
Mansur H S, Costa H S. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chemical Engineering Journal, 2008, 137(1): 72–83
CrossRef Google scholar
[54]
Mohanapriya S, Mumjitha M, Purnasai K, Raj V. Fabrication and characterization of poly(vinyl alcohol)-TiO2 nanocomposite films for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63: 141–156
CrossRef Google scholar
[55]
Kim H W, Lee H H, Knowles J C. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. Journal of Biomedical Materials Research. Part A, 2006, 79A(3): 643–649
CrossRef Google scholar
[56]
Liao S S, Cui F Z, Zhang W, Feng Q L. Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2004, 69B(2): 158–165
CrossRef Google scholar
[57]
Chan K, Wong H, Yeung K, Tjong S. Polypropylene biocomposites with boron nitride and nanohydroxyapatite reinforcements. Materials (Basel), 2015, 8(3): 992–1008
CrossRef Google scholar
[58]
Wei G, Ma P X. Nanostructured biomaterials for regeneration. Advanced Functional Materials, 2008, 18(22): 3568–3582
CrossRef Google scholar
[59]
Webster T J, Ahn E S. Nanostructured biomaterials for tissue engineering bone. Advances in Biochemical Engineering/Biotechnology, 2007, 103: 275–308
CrossRef Google scholar
[60]
Pina S, Oliveira J M, Reis R L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials, 2015, 27(7): 1143–1169
CrossRef Google scholar
[61]
Kumar C S S R. Biomimetic and Bioinspired Nanomaterials. Hoboken: Wiley, 2010, 1–586
[62]
Canillas M, Pena P, de Aza A H, Rodríguez M A. Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 2017, 56(3): 91–112
CrossRef Google scholar
[63]
Park S, Lih E, Park K S, Joung Y K, Han D K. Bin, Lih E, Park K S, Joung Y K, Han D K. Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 2017, 68: 77–105
CrossRef Google scholar
[64]
Cunniffe G M, Dickson G R, Partap S, Stanton K T, O’Brien J F. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. Journal of Materials Science. Materials in Medicine, 2010, 21(8): 2293–2298
CrossRef Google scholar
[65]
Yan L P, Silva-Correia J, Correia C, Caridade S G, Fernandes E M, Sousa R A, Mano J F, Oliveira J M, Oliveira A L, Reis R L. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine (London), 2013, 8(3): 359–378
CrossRef Google scholar
[66]
Barbani N, Guerra G D, Cristallini C, Urciuoli P, Avvisati R, Sala A, Rosellini E. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. Journal of Materials Science. Materials in Medicine, 2012, 23(1): 51–61
CrossRef Google scholar
[67]
Rogel M R, Qiu H, Ameer G A. The role of nanocomposites in bone regeneration. Journal of Materials Chemistry, 2008, 18(36): 4233
CrossRef Google scholar
[68]
Bhattacharyya S, Kumbar S G, Khan Y M, Nair L S, Singh A, Krogman N R, Brown P W, Allcock H R, Laurencin C T. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: Scaffolds for bone tissue engineering. Journal of Biomedical Nanotechnology, 2009, 5(1): 69–75
CrossRef Google scholar
[69]
Porter D. Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite. Materials Science and Engineering A, 2004, 365(1-2): 38–45
CrossRef Google scholar
[70]
Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337–342
CrossRef Google scholar
[71]
Dorozhkin S V. Calcium Orthophosphate-based Bioceramics and Biocomposites. Hoboken: Wiley, 2016, 1–405
[72]
Landis W J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone, 1995, 16(5): 533–544
CrossRef Google scholar
[73]
Rho J Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 1998, 20(2): 92–102
CrossRef Google scholar
[74]
Kumar G, Narayan B. Morbidity at bone graft donor sites. In: Classic Papers in Orthopaedics. Berlin: Springer, 2014, 503–505
[75]
García-Gareta E, Coathup M J, Blunn G W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81: 112–121
CrossRef Google scholar
[76]
Liu Y, Liu S, Luo D, Xue Z, Yang X, Gu L, Zhou Y, Wang T. Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold. Advanced Materials, 2016, 28(39): 8740–8748
CrossRef Google scholar
[77]
Becker J, Lu L, Runge M B, Zeng H, Yaszemski M J, Dadsetan M. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite. Journal of Biomedical Materials Research. Part A, 2015, 103(8): 2549–2557
CrossRef Google scholar
[78]
Hickey D J, Ercan B, Sun L, Webster T J. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomaterialia, 2015, 14: 175–184
CrossRef Google scholar
[79]
Atak B H, Buyuk B, Huysal M, Isik S, Senel M, Metzger W, Cetin G. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydrate Polymers, 2017, 164: 200–213
CrossRef Google scholar
[80]
Liao S, Ngiam M, Chan C K, Ramakrishna S. Fabrication of nano hydroxyapatite/collagen/osteonectin composites for bone graft applications. Biomedical Materials (Bristol, England), 2009, 4(2): 25019
CrossRef Google scholar
[81]
Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711
CrossRef Google scholar
[82]
Chan C K, Kumar T S, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Nanomedicine (London), 2006, 1(2): 177–188
CrossRef Google scholar
[83]
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474–5491
CrossRef Google scholar
[84]
Salgado A J, Coutinho O P, Reis R L. Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 2004, 4(8): 743–765
CrossRef Google scholar
[85]
Chan B P, Hui T Y, Wong M Y, Yip K H K, Chan G C F. Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering. Tissue Engineering. Part C, Methods, 2010, 16(2): 225–235
CrossRef Google scholar
[86]
Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. European Journal of Trauma, 2006, 32(2): 114–124
CrossRef Google scholar
[87]
Sachlos E, Czernuszka J T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5: 29–40
CrossRef Google scholar
[88]
Hayashi T. Biodegradable polymers for biomedical uses. Progress in Polymer Science, 1994, 19(4): 663–702
CrossRef Google scholar
[89]
Winter G D. Heterotopic bone formation in a synthetic sponge. Proceedings of the Royal Society of Medicine, 1970, 63: 1111–1115
[90]
Blokhuis T J, Termaat M F, den Boer F C, Patka P, Bakker F C, Haarman H J. Properties of calcium phosphate ceramics in relation to their in vivo behavior. Journal of Trauma, 2000, 48(1): 179–186
CrossRef Google scholar
[91]
Chan O, Coathup M J, Nesbitt A, Ho C Y, Hing K A, Buckland T, Campion C, Blunn G W. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomaterialia, 2012, 8(7): 2788–2794
CrossRef Google scholar
[92]
Wang J, Chen Y, Zhu X, Yuan T, Tan Y, Fan Y, Zhang X. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. Journal of Biomedical Materials Research. Part A, 2014, 102(12): 4234–4243
CrossRef Google scholar
[93]
Bi L, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. Journal of Biomedical Materials Research. Part A, 2012, 100(12): 3267–3275
CrossRef Google scholar
[94]
Klopčič S B, Kovač J, Kosmač T. Apatite-forming ability of alumina and zirconia ceramics in a supersaturated Ca/P solution. Biomolecular Engineering, 2007, 24(5): 467–471
CrossRef Google scholar
[95]
Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M. Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism, 2013, 10(2): 111–115
[96]
Thomann M, Krause C, Angrisani N, Bormann D, Hassel T, Windhagen H, Meyer-Lindenberg A. Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. Journal of Biomedical Materials Research. Part A, 2010, 93(4): 1609–1619
CrossRef Google scholar
[97]
Kasuga T, Maeda H, Kato K, Nogami M, Hata K I, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 2003, 24(19): 3247–3253
CrossRef Google scholar
[98]
Fricain J C, Schlaubitz S, Le Visage C, Arnault I, Derkaoui S M, Siadous R, Catros S, Lalande C, Bareille R, Renard M, et al. A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials, 2013, 34(12): 2947–2959
CrossRef Google scholar
[99]
Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711
CrossRef Google scholar
[100]
Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J. Heavy metal toxicity and the environment. In: Molecular, Clinical and Environmental Toxicology. Berlin: Springer, 2012, 101: 133–164
[101]
Ajayan P M, Schadler L S, Braun P V. Nanocomposite Science and Technology. Hoboken: Wiley, 2004, 1–239
[102]
Shirdar M R, Taheri M M, Moradifard H, Keyvanfar A, Shafaghat A, Shokuhfar T, Izman S. Hydroxyapatite-titania nanotube composite as a coating layer on Co-Cr-based implants: Mechanical and electrochemical optimization. Ceramics International, 2016, 42(6): 6942–6954
CrossRef Google scholar
[103]
Shirdar M R, Taheri M M, Sudin I, Shafaghat A, Keyvanfar A, Abd Majid M Z. In situ synthesis of hydroxyapatite-grafted titanium nanotube composite. Journal of Experimental Nanoscience, 2016, 11(10): 816–822
CrossRef Google scholar
[104]
Yang S, Leong K F, Du Z, Chua C K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 2001, 7(6): 679–689
CrossRef Google scholar
[105]
Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chemical Reviews, 2001, 101(7): 1869–1879
CrossRef Google scholar
[106]
O’Brien F J. Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14(3): 88–95
CrossRef Google scholar
[107]
Zhao C, Tan A, Pastorin G, Ho H K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 2013, 31(5): 654–668
CrossRef Google scholar
[108]
Gentile P, Ferreira A M, Callaghan J T, Miller C A, Atkinson J, Freeman C, Hatton P V. Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Advanced Healthcare Materials, 2017, 6(8): 1601182
CrossRef Google scholar
[109]
Green D, Walsh D, Mann S, Oreffo R O. The potential of biomimesis in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons. Bone, 2002, 30(6): 810–815
CrossRef Google scholar
[110]
Stupp S I. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 1997, 277(5330): 1242–1248
CrossRef Google scholar
[111]
Stupp S I. Supramolecular materials: Self-organized nanostructures. Science, 1997, 276(5311): 384–389
CrossRef Google scholar
[112]
Beniash E, Hartgerink J D, Storrie H, Stendahl J C, Stupp S I. Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomaterialia, 2005, 1(4): 387–397
CrossRef Google scholar
[113]
Hartgerink J D. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684–1688
CrossRef Google scholar
[114]
Kikuchi M, Ikoma T, Itoh S, Matsumoto H N, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Science and Technology, 2004, 64(6): 819–825
CrossRef Google scholar

Acknowledgment

T. Shokuhfar acknowledges the financial support from NSF-DMR 1710049. M. R. Shirdar and N. Farajpour are thankful to NSF-DMR 1564950.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2445 KB)

Accesses

Citations

Detail

Sections
Recommended

/