Nanocomposite materials in orthopedic applications

Mostafa R. Shirdar , Nasim Farajpour , Reza Shahbazian-Yassar , Tolou Shokuhfar

Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (1) : 1 -13.

PDF (2445KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (1) : 1 -13. DOI: 10.1007/s11705-018-1764-1
REVIEW ARTICLE
REVIEW ARTICLE

Nanocomposite materials in orthopedic applications

Author information +
History +
PDF (2445KB)

Abstract

This chapter is an introduction to nanocomposite materials and its classifications with emphasis on orthopedic application. It covers different types of matrix nanocomposites including ceramics, metal, polymer and natural-based nanocomposites with the main features and applications in the orthopedic. In addition, it presents structure, composition, and biomechanical features of bone as a natural nanocomposite. Finally, it deliberately presents developing methods for nanocomposites bone grafting.

Graphical abstract

Keywords

nanocomposite materials / orthopedic applications / bone grafting nanocomposites / nanocomposites classification

Cite this article

Download citation ▾
Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar. Nanocomposite materials in orthopedic applications. Front. Chem. Sci. Eng., 2019, 13(1): 1-13 DOI:10.1007/s11705-018-1764-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Henrique P, Camargo C, Satyanarayana K G, Wypych F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 2009, 12(1): 1–39

[2]

Mittal V. Bio-nanocomposites: Future high-value materials. In: Nanocomposites with Biodegradable Polymers: Synthesis, Properties, and Future perspectives. Oxford, 2011, 1–27

[3]

Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212

[4]

Lau A K T, Bhattacharyya D, Ling C H Y. Nanocomposites for engineering applications. Journal of Nanomaterials, 2009, 2009: 1

[5]

Tjong S C. Polymer Composites With Carbonaceous Nanofillers: Properties and Applications. Hoboken: Wiley, 2012, 1–388

[6]

Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Composites Science and Technology, 2005, 65(15-16): 2385–2406

[7]

Johnell O. The socioeconomic burden of fractures: Today and in the 21st century. American Journal of Medicine, 1997, 103(2): 20S–26S

[8]

Jones L C, Topoleski L D T, Tsao A K. Biomaterials in orthopaedic implants. In: Mechanical Testing of Orthopaedic Implants. Amsterdam: Elsevier, 2017, 17–32

[9]

Liu H, Webster T J. Bioinspired nanocomposites for orthopedic applications. Nanotechnology for the regeneration of hard and soft tissues. Singapore: World Scientific, 2007, 1–52

[10]

Gu Y, Chen X, Lee J H, Monteiro D A, Wang H, Lee W Y. Inkjet printed antibiotic-and calcium- eluting bioresorbable nanocomposite micropatterns for orthopedic implants. Acta Biomaterialia, 2012, 8(1): 424–431

[11]

Chan C K, Kumar T S S, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Future Nanomedicine, 2006, 1(2): 177–188

[12]

Okpala C C. Nanocomposites–an overview. International Journal of Engineering Research and Development, 2013, 8(11): 17–23

[13]

Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z. Polymer nanocomposites for energy storage, energy saving, and anticorrosion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 14929–14941

[14]

Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri M L, Agostiano A, Comparelli R. Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 2017, 281: 85–100

[15]

Duan X, Deng J, Wang X, Liu P. Preparation of rGO/G/PANI ternary nanocomposites as high performance electrode materials for supercapacitors with spent battery powder as raw material. Materials & Design, 2017, 129: 135–142

[16]

Tai W P, Kim Y S, Kim J G. Fabrication and magnetic properties of Al2O3/Co nanocomposites. Materials Chemistry and Physics, 2003, 82(2): 396–400

[17]

Russo T, Gloria A, De Santis R, D’Amora U, Balato G, Vollaro A, Oliviero O, Improta G, Triassi M, Ambrosio L. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. Bioactive Materials, 2017, 2(3): 156–161

[18]

Duc N D, Seung-Eock K, Quan T Q, Long D D, Anh V M. Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell. Composite Structures, 2018, 184: 1137–1144

[19]

Khalid A, Abdel-Karim A, Ali Atieh M, Javed S, McKay G. PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Separation and Purification Technology, 2018, 190: 165–176

[20]

Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212

[21]

Seo W J, Sung Y T, Kim S B, Lee Y B, Choe K H, Choe S H, Sung J Y, Kim W N. Effects of ultrasound on the synthesis and properties of polyurethane foam/clay nanocomposites. Journal of Applied Polymer Science, 2006, 102(4): 3764–3773

[22]

Vallet-Regí M, González-Calbet J M. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 2004, 32(1–2): 1–31

[23]

Ramay H R R, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials, 2004, 25(21): 5171–5180

[24]

Swain S K, Gotman I, Unger R, Gutmanas E Y. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility. Materials Science and Engineering C, 2017, 78: 88–95

[25]

Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 2012, 52(6): 1636–1653

[26]

Porwal H, Saggar R. Ceramic Matrix Nanocomposites. In: Comprehensive Composite Materials. Amsterdam: Elsevier, 2017, 138–161

[27]

Gupta P, Kumar D, Quraishi M A, Parkash O. Metal matrix nanocomposites and their application in corrosion control. Berlin: Springer, 2016, 231–246

[28]

Kheimehsari H, Izman S, Shirdar M R. Effects of HA-coating on the surface morphology and corrosion behavior of a Co-Cr-based implant in different conditions. Journal of Materials Engineering and Performance, 2015, 24(6): 2294–2302

[29]

Taheri M M, Kadir M R A, Shokuhfar T, Hamlekhan A, Assadian M, Shirdar M R, Mirjalili A. Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceramics International, 2015, 41(8): 9867–9872

[30]

Balani K, Chen Y, Harimkar S P, Dahotre N B, Agarwal A. Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomaterialia, 2007, 3(6): 944–951

[31]

Shirdar M R, Taheri M M. Surface morphology and corrosion behavior of hydroxyapatite-coated Co-Cr implant: Effect of sintering conditions. Journal of the Minerals Metals & Materials Society, 2017, 69(12): 2831–2837

[32]

Taheri M M, Kadir M R A, Shokuhfar T, Hamlekhan A, Shirdar M R, Naghizadeh F. Fluoridated hydroxyapatite nanorods as novel fillers for improving mechanical properties of dental composite: Synthesis and application. Materials & Design, 2015, 82: 119–125

[33]

Dorozhkin S. Bioceramics of calcium orthophosphates. Biomaterials, 2010, 31(7): 1465–1485

[34]

Sivaperumal V R, Mani R, Nachiappan M S, Arumugam K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Materials Characterization, 2017, 134: 416–421

[35]

Singh M K, Shokuhfar T, Gracio J J de A, de Sousa A C M, Fereira J M D F, Garmestani H, Ahzi S. Hydroxyapatite modified with carbon-nanotube-reinforced poly(methyl methacrylate): A nanocomposite material for biomedical applications. Advanced Functional Materials, 2008, 18(5): 694–700

[36]

Farrokhi-Rad M. Electrophoretic deposition of fiber hydroxyapatite/titania nanocomposite coatings. Ceramics International, 2017, 44(1): 622–630

[37]

Shirdar M R, Sudin I, Taheri M M, Keyvanfar A, Yusop M Z M. A novel hydroxyapatite composite reinforced with titanium nanotubes coated on Co–Cr-based alloy. Vacuum, 2015, 122: 82–89

[38]

Henderson H B, Rios O, Bryan Z L, Heitman C P K, Ludtka G M, Mackiewicz-Ludtka G, Melin A M, Manuel M V. Magneto-acoustic mixing technology: A novel method of processing metal-matrix nanocomposites. Advanced Engineering Materials, 2014, 16(9): 1078–1082

[39]

Li X, Xu J. Metal matrix nanocomposites. In: Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018, 97–137

[40]

Janas D, Liszka B. Copper matrix nanocomposites based on carbon nanotubes or graphene. Materials Chemistry Frontiers, 2018, 2(1): 22–35

[41]

Hassanzadeh-Aghdam M K, Mahmoodi M J. A comprehensive analysis of mechanical characteristics of carbon nanotube-metal matrix nanocomposites. Materials Science and Engineering A, 2017, 701: 34–44

[42]

Yahata C, Mochizuki A. Platelet compatibility of magnesium alloys. Materials Science and Engineering C, 2017, 78: 1119–1124

[43]

Witte F, Eliezer A. Biodegradable metals. In: Degradation of Implant Materials. Berlin: Springer, 2012, 93–110

[44]

Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701

[45]

Khalajabadi S Z, Abu A B H, Ahmad N, Kadir M R A, Ismail A F, Nasiri R, Haider W, Redzuan N B H. Biodegradable Mg/HA/TiO2 nanocomposites coated with MgO and Si/MgO for orthopedic applications: A study on the corrosion, surface characterization, and biocompatability. Coatings, 2017, 7(7): 154

[46]

Zhu C, Lv Y, Qian C, Qian H, Jiao T, Wang L, Zhang F. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing. Scientific Reports, 2016, 6(1): 38875

[47]

Zhu C, Lv Y, Qian C, Ding Z, Jiao T, Gu X, Lu E, Wang L, Zhang F. Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing. International Journal of Nanomedicine, 2018, 13: 1881–1898

[48]

De Journett T J, Spicer J B. Synthesis and patterning of polymer matrix nanocomposites using femtosecond laser-assisted processing. Materials Research Society, 2012, 1455, mrss12-1455-ii02-03

[49]

Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Materials Science and Engineering C, 2016, 60: 195–203

[50]

Dubey S P, Thakur V K, Krishnaswamy S, Abhyankar H A, Marchante V, Brighton J L. Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 2017, 146: 655–663

[51]

Palmero P. Ceramic-polymer nanocomposites for bone-tissue regeneration. In: Nanocomposites for Musculoskeletal Tissue Regeneration. Amsterdam: Elsevier, 2016, 331–367

[52]

Hule R A, Pochan D J. Polymer nanocomposites for biomedical applications. MRS Bulletin, 2007, 32(4): 354–358

[53]

Mansur H S, Costa H S. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chemical Engineering Journal, 2008, 137(1): 72–83

[54]

Mohanapriya S, Mumjitha M, Purnasai K, Raj V. Fabrication and characterization of poly(vinyl alcohol)-TiO2 nanocomposite films for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63: 141–156

[55]

Kim H W, Lee H H, Knowles J C. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. Journal of Biomedical Materials Research. Part A, 2006, 79A(3): 643–649

[56]

Liao S S, Cui F Z, Zhang W, Feng Q L. Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2004, 69B(2): 158–165

[57]

Chan K, Wong H, Yeung K, Tjong S. Polypropylene biocomposites with boron nitride and nanohydroxyapatite reinforcements. Materials (Basel), 2015, 8(3): 992–1008

[58]

Wei G, Ma P X. Nanostructured biomaterials for regeneration. Advanced Functional Materials, 2008, 18(22): 3568–3582

[59]

Webster T J, Ahn E S. Nanostructured biomaterials for tissue engineering bone. Advances in Biochemical Engineering/Biotechnology, 2007, 103: 275–308

[60]

Pina S, Oliveira J M, Reis R L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials, 2015, 27(7): 1143–1169

[61]

Kumar C S S R. Biomimetic and Bioinspired Nanomaterials. Hoboken: Wiley, 2010, 1–586

[62]

Canillas M, Pena P, de Aza A H, Rodríguez M A. Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 2017, 56(3): 91–112

[63]

Park S, Lih E, Park K S, Joung Y K, Han D K. Bin, Lih E, Park K S, Joung Y K, Han D K. Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 2017, 68: 77–105

[64]

Cunniffe G M, Dickson G R, Partap S, Stanton K T, O’Brien J F. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. Journal of Materials Science. Materials in Medicine, 2010, 21(8): 2293–2298

[65]

Yan L P, Silva-Correia J, Correia C, Caridade S G, Fernandes E M, Sousa R A, Mano J F, Oliveira J M, Oliveira A L, Reis R L. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine (London), 2013, 8(3): 359–378

[66]

Barbani N, Guerra G D, Cristallini C, Urciuoli P, Avvisati R, Sala A, Rosellini E. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. Journal of Materials Science. Materials in Medicine, 2012, 23(1): 51–61

[67]

Rogel M R, Qiu H, Ameer G A. The role of nanocomposites in bone regeneration. Journal of Materials Chemistry, 2008, 18(36): 4233

[68]

Bhattacharyya S, Kumbar S G, Khan Y M, Nair L S, Singh A, Krogman N R, Brown P W, Allcock H R, Laurencin C T. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: Scaffolds for bone tissue engineering. Journal of Biomedical Nanotechnology, 2009, 5(1): 69–75

[69]

Porter D. Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite. Materials Science and Engineering A, 2004, 365(1-2): 38–45

[70]

Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337–342

[71]

Dorozhkin S V. Calcium Orthophosphate-based Bioceramics and Biocomposites. Hoboken: Wiley, 2016, 1–405

[72]

Landis W J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone, 1995, 16(5): 533–544

[73]

Rho J Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 1998, 20(2): 92–102

[74]

Kumar G, Narayan B. Morbidity at bone graft donor sites. In: Classic Papers in Orthopaedics. Berlin: Springer, 2014, 503–505

[75]

García-Gareta E, Coathup M J, Blunn G W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81: 112–121

[76]

Liu Y, Liu S, Luo D, Xue Z, Yang X, Gu L, Zhou Y, Wang T. Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold. Advanced Materials, 2016, 28(39): 8740–8748

[77]

Becker J, Lu L, Runge M B, Zeng H, Yaszemski M J, Dadsetan M. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite. Journal of Biomedical Materials Research. Part A, 2015, 103(8): 2549–2557

[78]

Hickey D J, Ercan B, Sun L, Webster T J. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomaterialia, 2015, 14: 175–184

[79]

Atak B H, Buyuk B, Huysal M, Isik S, Senel M, Metzger W, Cetin G. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydrate Polymers, 2017, 164: 200–213

[80]

Liao S, Ngiam M, Chan C K, Ramakrishna S. Fabrication of nano hydroxyapatite/collagen/osteonectin composites for bone graft applications. Biomedical Materials (Bristol, England), 2009, 4(2): 25019

[81]

Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711

[82]

Chan C K, Kumar T S, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Nanomedicine (London), 2006, 1(2): 177–188

[83]

Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474–5491

[84]

Salgado A J, Coutinho O P, Reis R L. Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 2004, 4(8): 743–765

[85]

Chan B P, Hui T Y, Wong M Y, Yip K H K, Chan G C F. Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering. Tissue Engineering. Part C, Methods, 2010, 16(2): 225–235

[86]

Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. European Journal of Trauma, 2006, 32(2): 114–124

[87]

Sachlos E, Czernuszka J T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5: 29–40

[88]

Hayashi T. Biodegradable polymers for biomedical uses. Progress in Polymer Science, 1994, 19(4): 663–702

[89]

Winter G D. Heterotopic bone formation in a synthetic sponge. Proceedings of the Royal Society of Medicine, 1970, 63: 1111–1115

[90]

Blokhuis T J, Termaat M F, den Boer F C, Patka P, Bakker F C, Haarman H J. Properties of calcium phosphate ceramics in relation to their in vivo behavior. Journal of Trauma, 2000, 48(1): 179–186

[91]

Chan O, Coathup M J, Nesbitt A, Ho C Y, Hing K A, Buckland T, Campion C, Blunn G W. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomaterialia, 2012, 8(7): 2788–2794

[92]

Wang J, Chen Y, Zhu X, Yuan T, Tan Y, Fan Y, Zhang X. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. Journal of Biomedical Materials Research. Part A, 2014, 102(12): 4234–4243

[93]

Bi L, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. Journal of Biomedical Materials Research. Part A, 2012, 100(12): 3267–3275

[94]

Klopčič S B, Kovač J, Kosmač T. Apatite-forming ability of alumina and zirconia ceramics in a supersaturated Ca/P solution. Biomolecular Engineering, 2007, 24(5): 467–471

[95]

Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M. Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism, 2013, 10(2): 111–115

[96]

Thomann M, Krause C, Angrisani N, Bormann D, Hassel T, Windhagen H, Meyer-Lindenberg A. Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. Journal of Biomedical Materials Research. Part A, 2010, 93(4): 1609–1619

[97]

Kasuga T, Maeda H, Kato K, Nogami M, Hata K I, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 2003, 24(19): 3247–3253

[98]

Fricain J C, Schlaubitz S, Le Visage C, Arnault I, Derkaoui S M, Siadous R, Catros S, Lalande C, Bareille R, Renard M, et al. A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials, 2013, 34(12): 2947–2959

[99]

Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711

[100]

Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J. Heavy metal toxicity and the environment. In: Molecular, Clinical and Environmental Toxicology. Berlin: Springer, 2012, 101: 133–164

[101]

Ajayan P M, Schadler L S, Braun P V. Nanocomposite Science and Technology. Hoboken: Wiley, 2004, 1–239

[102]

Shirdar M R, Taheri M M, Moradifard H, Keyvanfar A, Shafaghat A, Shokuhfar T, Izman S. Hydroxyapatite-titania nanotube composite as a coating layer on Co-Cr-based implants: Mechanical and electrochemical optimization. Ceramics International, 2016, 42(6): 6942–6954

[103]

Shirdar M R, Taheri M M, Sudin I, Shafaghat A, Keyvanfar A, Abd Majid M Z. In situ synthesis of hydroxyapatite-grafted titanium nanotube composite. Journal of Experimental Nanoscience, 2016, 11(10): 816–822

[104]

Yang S, Leong K F, Du Z, Chua C K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 2001, 7(6): 679–689

[105]

Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chemical Reviews, 2001, 101(7): 1869–1879

[106]

O’Brien F J. Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14(3): 88–95

[107]

Zhao C, Tan A, Pastorin G, Ho H K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 2013, 31(5): 654–668

[108]

Gentile P, Ferreira A M, Callaghan J T, Miller C A, Atkinson J, Freeman C, Hatton P V. Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Advanced Healthcare Materials, 2017, 6(8): 1601182

[109]

Green D, Walsh D, Mann S, Oreffo R O. The potential of biomimesis in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons. Bone, 2002, 30(6): 810–815

[110]

Stupp S I. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 1997, 277(5330): 1242–1248

[111]

Stupp S I. Supramolecular materials: Self-organized nanostructures. Science, 1997, 276(5311): 384–389

[112]

Beniash E, Hartgerink J D, Storrie H, Stendahl J C, Stupp S I. Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomaterialia, 2005, 1(4): 387–397

[113]

Hartgerink J D. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684–1688

[114]

Kikuchi M, Ikoma T, Itoh S, Matsumoto H N, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Science and Technology, 2004, 64(6): 819–825

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2445KB)

4142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/