Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties
Wolfgang Bauer, Tanja Ossiander, Birgit Weber
Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties
The synthesis of new Schiff base-like ligands with asymmetric substituents pattern and their iron complexes with pyridine as axial ligand is described. Two of the ligands and one of the iron(II) complexes were characterized by single crystal X-ray structure analysis. One of the the iron(II) complexes shows spin crossover behavior while the others remain in the high spin state. The influence of the reduced symmetry of the ligand on the properties of the complexes is discussed.
iron / Schiff base-like ligands / magnetism / spin crossover / X-ray structures
[1] |
Catala L, Mallah T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications. Coordination Chemistry Reviews, 2017, 346: 32–61
CrossRef
Google scholar
|
[2] |
Ferrando-Soria J, Vallejo J, Castellano M, Martínez-Lillo J, Pardo E, Cano J, Castro I, Lloret F, Ruiz-García R, Julve M. Molecular magnetism, quo vadis?: A historical perspective from a coordination chemist viewpoint. Coordination Chemistry Reviews, 2017, 339: 17–103
CrossRef
Google scholar
|
[3] |
Miller J S. Magnetically ordered molecule-based materials. Chemical Society Reviews, 2011, 40(6): 3266–3296
CrossRef
Google scholar
|
[4] |
Sieklucka B, Pinkowicz D. Molecular Magnetic Materials.Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 1–483
|
[5] |
Gaspar A B, Weber B. Spin Crossover Phenomenon in Coordination Compounds. In: Molecular Magnetic Materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 231–252
|
[6] |
Halcrow M A. Spin-Crossover Materials. Chichester: John Wiley & Sons Ltd, 2013, 1–546
|
[7] |
Feltham H L, Barltrop A S, Brooker S. Spin crossover in iron(II) complexes of 3,4,5-tri-substituted-1,2,4-triazole (Rdpt), 3,5-di-substituted-1,2,4-triazolate (dpt -), and related ligands. Coordination Chemistry Reviews, 2017, 344: 26–53
CrossRef
Google scholar
|
[8] |
Ni Z P, Liu J L, Hoque M N, Liu W, Li J Y, Chen Y C, Tong M L. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 335: 28–43
CrossRef
Google scholar
|
[9] |
Otsubo K, Haraguchi T, Kitagawa H. Nanoscale crystalline architectures of Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346: 123–138
CrossRef
Google scholar
|
[10] |
Senthil Kumar K, Ruben M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 2017, 346: 176–205
CrossRef
Google scholar
|
[11] |
Harding D J, Harding P, Phonsri W. Spin crossover in iron(III) complexes. Coordination Chemistry Reviews, 2016, 313: 38–61
CrossRef
Google scholar
|
[12] |
Brooker S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chemical Society Reviews, 2015, 44(10): 2880–2892
CrossRef
Google scholar
|
[13] |
Gütlich P, Gaspar A B, Garcia Y. Spin state switching in iron coordination compounds. Beilstein Journal of Organic Chemistry, 2013, 9: 342–391
CrossRef
Google scholar
|
[14] |
Jureschi C-M, Linares J, Boulmaali A, Dahoo P R, Rotaru A, Garcia Y.Pressure and temperature sensors using two spin crossover materials. Sensors, 2016, 16: 187/1–187/9
|
[15] |
Gütlich P, Goodwin H. Spin Crossover in Transition Metal Compounds I–III. Heidelberg: Springer, 2004, 1–294
|
[16] |
Boillot M L, Weber B. Mononuclear ferrous and ferric complexes. Comptes Rendus. Chimie, 2018 (Online). doi: 10.1016/j.crci.2018.01.006
|
[17] |
Weber B, Bauer W, Obel J. An iron(II) spin-crossover complex with a 70 K wide thermal hysteresis loop. Angewandte Chemie International Edition, 2008, 47(52): 10098–10101
CrossRef
Google scholar
|
[18] |
Levchenko G G, Bukin G V, Gaspar A B, Real J A. The pressure-induced spin transition in the Fe(phen)2(NCS)2 model compound. Russian Journal of Physical Chemistry A, 2009, 83(6): 951–954
CrossRef
Google scholar
|
[19] |
Nowak R, Prasetyanto E A, de Cola L, Bojer B, Siegel R, Senker J, Rössler E, Weber B. Proton-driven coordination-induced spin state switch (PD-CISSS) of iron(II) complexes. Chemical Communications, 2017, 53(5): 971–974
CrossRef
Google scholar
|
[20] |
Baldé C, Bauer W, Kaps E, Neville S, Desplanches C, Chastanet G, Weber B, Létard J F. Light-induced excited spin-state properties in 1D iron(II) chain compounds. European Journal of Inorganic Chemistry, 2013, 2013: 2744–2750
|
[21] |
Gaspar A B, Seredyuk M. Spin crossover in soft matter. Coordination Chemistry Reviews, 2014, 268: 41–58
CrossRef
Google scholar
|
[22] |
Luo Y H, Liu Q L, Yang L J, Sun Y, Wang J W, You C Q, Sun B W. Magnetic observation of above room-temperature spin transition in vesicular nano-spheres. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4(34): 8061–8069
CrossRef
Google scholar
|
[23] |
Romero-Morcillo T, Seredyuk M, Munoz M C, Real J A. Meltable spin transition molecular materials with tunable Tc and hysteresis loop width. Angewandte Chemie International Edition, 2015, 54(49): 14777–14781
CrossRef
Google scholar
|
[24] |
Gandolfi C, Morgan G G, Albrecht M. A magnetic iron(III) switch with controlled and adjustable thermal response for solution processing. Dalton Transactions, 2012, 41(13): 3726–3730
CrossRef
Google scholar
|
[25] |
Garcia Y, Su B-L, Komatsu Y, Kato K, Yamamoto Y, Kamihata H, Lee Y H, Fuyuhiro A, Kawata S, Hayami S.Spin-crossover behaviors based on intermolecular interactions for cobalt(II) complexes with long alkyl chains. European Journal of Inorganic Chemistry, 2012, 2012: 2769–2775
|
[26] |
Schlamp S, Weber B, Naik A D, Garcia Y. Cooperative spin transition in a lipid layer like system. Chemical Communications, 2011, 47(25): 7152–7154
CrossRef
Google scholar
|
[27] |
Schlamp S, Thoma P, Weber B. Influence of the alkyl chain length on the self-assembly of amphiphilic iron complexes: An analysis of X-ray structures. Chemistry, 2014, 20(21): 6462–6473
CrossRef
Google scholar
|
[28] |
Bodenthin Y, Schwarz G, Tomkowicz Z, Lommel M, Geue T, Haase W, Möhwald H, Pietsch U, Kurth D G. Spin-crossover phenomena in extended multi-component metallo-supramolecular assemblies. Coordination Chemistry Reviews, 2009, 253(19–20): 2414–2422
CrossRef
Google scholar
|
[29] |
Gaspar A B, Seredyuk M, Gütlich P. Spin crossover in metallomesogens. Coordination Chemistry Reviews, 2009, 253(19–20): 2399–2413
CrossRef
Google scholar
|
[30] |
Zein S, Borshch S A. Energetics of binuclear spin transition complexes. Journal of the American Chemical Society, 2005, 127(46): 16197–16201
CrossRef
Google scholar
|
[31] |
Lochenie C, Schötz K, Panzer F, Kurz H, Maier B, Puchtler F, Agarwal S, Köhler A, Weber B. Spin-crossover iron(II) coordination polymer with fluorescent properties: Correlation between emission properties and spin state. Journal of the American Chemical Society, 2018, 140(2): 700–709
CrossRef
Google scholar
|
[32] |
Kurz H, Lochenie C, Wagner K G, Schneider S, Karg M, Weber B. Synthesis and optical properties of phenanthroline-derived Schiff base-like dinuclear Ru(II)-Ni(II) complexes. Chemistry, 2018, 24(20): 5100–5111
CrossRef
Google scholar
|
[33] |
Schäfer B, Bauer T, Faus I, Wolny J A, Dahms F, Fuhr O, Lebedkin S, Wille H C, Schlage K, Chevalier K,
CrossRef
Google scholar
|
[34] |
Shepherd H J, Quintero C M, Molnár G, Salmon L, Bousseksou A. Luminescent Spin-Crossover Materials. In: Spin-Crossover Materials. Chichester: John Wiley & Sons Ltd, 2013, 347–373
|
[35] |
Hasegawa M, Renz F, Hara T, Kikuchi Y, Fukuda Y, Okubo J, Hoshi T, Linert W. Fluorescence spectra of Fe(II) spin crossover complexes with 2,6-bis(benzimidazole-2′-yl)pyridine. Chemical Physics, 2002, 277(1): 21–30
CrossRef
Google scholar
|
[36] |
Faulmann C, Jacob K, Dorbes S, Lampert S, Malfant I, Doublet M L, Valade L, Real J A. Electrical conductivity and spin crossover: A new achievement with a metal bis dithiolene complex. Inorganic Chemistry, 2007, 46(21): 8548–8559
CrossRef
Google scholar
|
[37] |
Dorbes S, Valade L, Real J A, Faulmann C. [Fe(sal2-trien)][Ni(dmit)2]: Towards switchable spin crossover molecular conductors. Chemical Communications, 2005, (1): 69–71
CrossRef
Google scholar
|
[38] |
Chen Y C, Meng Y, Ni Z P, Tong M L. Synergistic electrical bistability in a conductive spin crossover heterostructure. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(5): 945–949
CrossRef
Google scholar
|
[39] |
Ohkoshi S I, Imoto K, Tsunobuchi Y, Takano S, Tokoro H. Light-induced spin-crossover magnet. Nature Chemistry, 2011, 3(7): 564–569
CrossRef
Google scholar
|
[40] |
Suleimanov I, Kraieva O, Sánchez Costa J, Fritsky I O, Molnár G, Salmon L, Bousseksou A. Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(19): 5026–5032
CrossRef
Google scholar
|
[41] |
Kraieva O, Suleimanov I, Molnár G, Salmon L, Bousseksou A. CdTe quantum dot fluorescence modulation by spin crossover. Magnetochemistry, 2016, 2(1): 11
CrossRef
Google scholar
|
[42] |
Quintero C M, Gural’skiy I A, Salmon L, Molnar G, Bergaud C, Bousseksou A. Soft lithographic patterning of spin crossover complexes. Part 1: Fluorescent detection of the spin transition in single nano-objects. Journal of Materials Chemistry, 2012, 22(9): 3745–3751
CrossRef
Google scholar
|
[43] |
Weber B. Synthesis of coordination polymer nanoparticles using self-assembled block copolymers as template. Chemistry, 2017, 23(72): 18093–18100
CrossRef
Google scholar
|
[44] |
Klimm O, Göbel C, Rosenfeldt S, Puchtler F, Miyajima N, Marquardt K, Drechsler M, Breu J, Förster S, Weber B. Synthesis of Fe(L)(bipy)n spin crossover nanoparticles using blockcopolymer micelles. Nanoscale, 2016, 8(45): 19058–19065
CrossRef
Google scholar
|
[45] |
Fitzpatrick A J, O’Connor H M, Morgan G G. A room temperature spin crossover ionic liquid. Dalton Transactions, 2015, 44(48): 20839–20842
CrossRef
Google scholar
|
[46] |
Okuhata M, Funasako Y, Takahashi K, Mochida T. A spin-crossover ionic liquid from the cationic iron(III) Schiff base complex. Chemical Communications, 2013, 49(69): 7662–7664
CrossRef
Google scholar
|
[47] |
Liu X, Manzur C, Novoa N, Celedón S, Carrillo D, Hamon J R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 2018, 357: 144–172
CrossRef
Google scholar
|
[48] |
Altomare A, Burla M C, Camalli M, Cascarano G L, Giacovazzo C, Guagliardi A, Moliterni A G G, Polidori G, Spagna R. SIR97: A new tool for crystal structure determination and refinement. Journal of Applied Crystallography, 1999, 32(1): 115–119
CrossRef
Google scholar
|
[49] |
Sheldrick G M. A short history of SHELX. Acta Crystallographica. Section A, Foundations of Crystallography, 2008, 64(1): 112–122
CrossRef
Google scholar
|
[50] |
Farrugia L. ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 1997, 30(5): 565
CrossRef
Google scholar
|
[51] |
Johnson C K, Burnett M N. ORTEP-III. Oak-Ridge: Oak-Ridge National Laboratory, 1996
|
[52] |
Keller E. Schakal-99. Freiburg: University of Freiburg, 1999
|
[53] |
Kahn O. Molecular Magnetism. New York: VCH, 1993, 1–380
|
[54] |
Becker H G O. Organikum, 19th ed. Berlin: Johann Ambrosius Barth, 1993, 1–786
|
[55] |
Jäger E G. “Bioinspired” metal complexes of macrocyclic [N42-] and open chain [N2O22-] Schiff base ligands—a link between porphyrins and salicylaldimines. In: Chemistry At The Beginning of The Third Millennium: Molecular Design, Supramolecules, Nanotechnology, And Beyond. Berlin: Springer, 2000, 103–138
|
[56] |
Jäger E G. Koordinierte und freie Estergruppen in stabilen Metallchelaten. Zeitschrift fur Anorganische und Allgemeine Chemie, 1967, 349: 139–150
CrossRef
Google scholar
|
[57] |
Claisen L. Untersuchungen über die Oxymethylenverbindungen. Justus Liebigs Annalen der Chemie, 1897, 297(1-2): 1–98
CrossRef
Google scholar
|
[58] |
Weber B, Betz R, Bauer W, Schlamp S. Crystal structure of iron(II) acetate. Zeitschrift fur Anorganische und Allgemeine Chemie, 2011, 637(1): 102–107
CrossRef
Google scholar
|
[59] |
Holleman A F, Wiberg E, Wiberg N. Lehrbuch der anorganischen Chemie, 101st ed. Berlin: de Gruyter, 1995, 1–2149
|
[60] |
Weber B, Jäger E-G. Structure and magnetic properties of iron(II/III) complexes with N2O22- coordinating Schiff base like ligands. European Journal of Inorganic Chemistry, 2009, 2009: 465–477
|
[61] |
Bauer W, Ossiander T, Weber B.A promising new Schiff base-like ligand for the synthesis of octahedral iron(II) spin crossover complexes. Zeitschrift für Naturforschung B, 2010, 2010: 323–328
|
[62] |
Lochenie C, Heinz J, Milius W, Weber B. Iron(II) spin crossover complexes with diaminonaphthalene-based Schiff base-like ligands: Mononuclear complexes. Dalton Transactions, 2015, 44(41): 18065–18077
CrossRef
Google scholar
|
[63] |
Dankhoff K, Weber B. Novel Cu(II) complexes with NNO-Schiff base-like ligands—structures and magnetic properties. CrystEngComm, 2018, 20(6): 818–828
CrossRef
Google scholar
|
[64] |
Weber B, Kaps E, Obel J, Bauer W. Synthesis and magnetic properties of new octahedral iron(II) complexes. Zeitschrift fur Anorganische und Allgemeine Chemie, 2008, 634(8): 1421–1426
CrossRef
Google scholar
|
[65] |
Weber B, Obel J, Henner-Vasquez D, Bauer W.Two new iron(II) spin-crossover complexes with N4O2 coordination sphere and spin transition around room temperature. European Journal of Inorganic Chemistry, 2009, 2009: 5527–5534
|
[66] |
Pfaffeneder T M, Thallmair S, Bauer W, Weber B. Complete and incomplete spin transitions in 1D chain iron(II) compounds. New Journal of Chemistry, 2011, 35(3): 691–700
CrossRef
Google scholar
|
[67] |
Bauer W, Pfaffeneder T, Achterhold K, Weber B. Complete two-step spin-transition in a 1D chain iron(II) complex with a 110-K wide intermediate plateau. European Journal of Inorganic Chemistry, 2011, 2011: 3183–3192
|
[68] |
Schlamp S, Thoma P, Weber B. New octahedral, head-tail iron(II) complexes with spin crossover properties. European Journal of Inorganic Chemistry, 2012, 2012: 2759–2768
|
[69] |
Weber B. Spin crossover complexes with N4O2 coordination sphere—the influence of covalent linkers on cooperative interactions. Coordination Chemistry Reviews, 2009, 253(19–20): 2432–2449
CrossRef
Google scholar
|
[70] |
Göbel C, Klimm O, Puchtler F, Rosenfeldt S, Förster S, Weber B. Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles. Beilstein Journal of Nanotechnology, 2017, 8: 1318–1327
CrossRef
Google scholar
|
[71] |
Nowak R, Bauer W, Ossiander T, Weber B. Slow self-assembly favours hysteresis above room temperature for an iron(II) 1D-chain spin-crossover complex. European Journal of Inorganic Chemistry, 2013, 2013: 975–983
|
[72] |
Weber B, Kaps E S, Desplanches C, Létard J-F. Quenching the hysteresis in single crystals of a 1D chain iron(II) spin crossover complex. European Journal of Inorganic Chemistry, 2008, 2008: 2963–2966
|
/
〈 | 〉 |