Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties

Wolfgang Bauer , Tanja Ossiander , Birgit Weber

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 400 -408.

PDF (431KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 400 -408. DOI: 10.1007/s11705-018-1753-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties

Author information +
History +
PDF (431KB)

Abstract

The synthesis of new Schiff base-like ligands with asymmetric substituents pattern and their iron complexes with pyridine as axial ligand is described. Two of the ligands and one of the iron(II) complexes were characterized by single crystal X-ray structure analysis. One of the the iron(II) complexes shows spin crossover behavior while the others remain in the high spin state. The influence of the reduced symmetry of the ligand on the properties of the complexes is discussed.

Graphical abstract

Keywords

iron / Schiff base-like ligands / magnetism / spin crossover / X-ray structures

Cite this article

Download citation ▾
Wolfgang Bauer, Tanja Ossiander, Birgit Weber. Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties. Front. Chem. Sci. Eng., 2018, 12(3): 400-408 DOI:10.1007/s11705-018-1753-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Catala L, Mallah T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications. Coordination Chemistry Reviews, 2017, 346: 32–61

[2]

Ferrando-Soria J, Vallejo J, Castellano M, Martínez-Lillo J, Pardo E, Cano J, Castro I, Lloret F, Ruiz-García R, Julve M. Molecular magnetism, quo vadis?: A historical perspective from a coordination chemist viewpoint. Coordination Chemistry Reviews, 2017, 339: 17–103

[3]

Miller J S. Magnetically ordered molecule-based materials. Chemical Society Reviews, 2011, 40(6): 3266–3296

[4]

Sieklucka B, Pinkowicz D. Molecular Magnetic Materials.Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 1–483

[5]

Gaspar A B, Weber B. Spin Crossover Phenomenon in Coordination Compounds. In: Molecular Magnetic Materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 231–252

[6]

Halcrow M A. Spin-Crossover Materials. Chichester: John Wiley & Sons Ltd, 2013, 1–546

[7]

Feltham H L, Barltrop A S, Brooker S. Spin crossover in iron(II) complexes of 3,4,5-tri-substituted-1,2,4-triazole (Rdpt), 3,5-di-substituted-1,2,4-triazolate (dpt -), and related ligands. Coordination Chemistry Reviews, 2017, 344: 26–53

[8]

Ni Z P, Liu J L, Hoque M N, Liu W, Li J Y, Chen Y C, Tong M L. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 335: 28–43

[9]

Otsubo K, Haraguchi T, Kitagawa H. Nanoscale crystalline architectures of Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346: 123–138

[10]

Senthil Kumar K, Ruben M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 2017, 346: 176–205

[11]

Harding D J, Harding P, Phonsri W. Spin crossover in iron(III) complexes. Coordination Chemistry Reviews, 2016, 313: 38–61

[12]

Brooker S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chemical Society Reviews, 2015, 44(10): 2880–2892

[13]

Gütlich P, Gaspar A B, Garcia Y. Spin state switching in iron coordination compounds. Beilstein Journal of Organic Chemistry, 2013, 9: 342–391

[14]

Jureschi C-M, Linares J, Boulmaali A, Dahoo P R, Rotaru A, Garcia Y.Pressure and temperature sensors using two spin crossover materials. Sensors, 2016, 16: 187/1–187/9

[15]

Gütlich P, Goodwin H. Spin Crossover in Transition Metal Compounds I–III. Heidelberg: Springer, 2004, 1–294

[16]

Boillot M L, Weber B. Mononuclear ferrous and ferric complexes. Comptes Rendus. Chimie, 2018 (Online). doi: 10.1016/j.crci.2018.01.006

[17]

Weber B, Bauer W, Obel J. An iron(II) spin-crossover complex with a 70 K wide thermal hysteresis loop. Angewandte Chemie International Edition, 2008, 47(52): 10098–10101

[18]

Levchenko G G, Bukin G V, Gaspar A B, Real J A. The pressure-induced spin transition in the Fe(phen)2(NCS)2 model compound. Russian Journal of Physical Chemistry A, 2009, 83(6): 951–954

[19]

Nowak R, Prasetyanto E A, de Cola L, Bojer B, Siegel R, Senker J, Rössler E, Weber B. Proton-driven coordination-induced spin state switch (PD-CISSS) of iron(II) complexes. Chemical Communications, 2017, 53(5): 971–974

[20]

Baldé C, Bauer W, Kaps E, Neville S, Desplanches C, Chastanet G, Weber B, Létard J F. Light-induced excited spin-state properties in 1D iron(II) chain compounds. European Journal of Inorganic Chemistry, 2013, 2013: 2744–2750

[21]

Gaspar A B, Seredyuk M. Spin crossover in soft matter. Coordination Chemistry Reviews, 2014, 268: 41–58

[22]

Luo Y H, Liu Q L, Yang L J, Sun Y, Wang J W, You C Q, Sun B W. Magnetic observation of above room-temperature spin transition in vesicular nano-spheres. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4(34): 8061–8069

[23]

Romero-Morcillo T, Seredyuk M, Munoz M C, Real J A. Meltable spin transition molecular materials with tunable Tc and hysteresis loop width. Angewandte Chemie International Edition, 2015, 54(49): 14777–14781

[24]

Gandolfi C, Morgan G G, Albrecht M. A magnetic iron(III) switch with controlled and adjustable thermal response for solution processing. Dalton Transactions, 2012, 41(13): 3726–3730

[25]

Garcia Y, Su B-L, Komatsu Y, Kato K, Yamamoto Y, Kamihata H, Lee Y H, Fuyuhiro A, Kawata S, Hayami S.Spin-crossover behaviors based on intermolecular interactions for cobalt(II) complexes with long alkyl chains. European Journal of Inorganic Chemistry, 2012, 2012: 2769–2775

[26]

Schlamp S, Weber B, Naik A D, Garcia Y. Cooperative spin transition in a lipid layer like system. Chemical Communications, 2011, 47(25): 7152–7154

[27]

Schlamp S, Thoma P, Weber B. Influence of the alkyl chain length on the self-assembly of amphiphilic iron complexes: An analysis of X-ray structures. Chemistry, 2014, 20(21): 6462–6473

[28]

Bodenthin Y, Schwarz G, Tomkowicz Z, Lommel M, Geue T, Haase W, Möhwald H, Pietsch U, Kurth D G. Spin-crossover phenomena in extended multi-component metallo-supramolecular assemblies. Coordination Chemistry Reviews, 2009, 253(19–20): 2414–2422

[29]

Gaspar A B, Seredyuk M, Gütlich P. Spin crossover in metallomesogens. Coordination Chemistry Reviews, 2009, 253(19–20): 2399–2413

[30]

Zein S, Borshch S A. Energetics of binuclear spin transition complexes. Journal of the American Chemical Society, 2005, 127(46): 16197–16201

[31]

Lochenie C, Schötz K, Panzer F, Kurz H, Maier B, Puchtler F, Agarwal S, Köhler A, Weber B. Spin-crossover iron(II) coordination polymer with fluorescent properties: Correlation between emission properties and spin state. Journal of the American Chemical Society, 2018, 140(2): 700–709

[32]

Kurz H, Lochenie C, Wagner K G, Schneider S, Karg M, Weber B. Synthesis and optical properties of phenanthroline-derived Schiff base-like dinuclear Ru(II)-Ni(II) complexes. Chemistry, 2018, 24(20): 5100–5111

[33]

Schäfer B, Bauer T, Faus I, Wolny J A, Dahms F, Fuhr O, Lebedkin S, Wille H C, Schlage K, Chevalier K, . A luminescent Pt2Fe spin crossover complex. Dalton Transactions, 2017, 46(7): 2289–2302

[34]

Shepherd H J, Quintero C M, Molnár G, Salmon L, Bousseksou A. Luminescent Spin-Crossover Materials. In: Spin-Crossover Materials. Chichester: John Wiley & Sons Ltd, 2013, 347–373

[35]

Hasegawa M, Renz F, Hara T, Kikuchi Y, Fukuda Y, Okubo J, Hoshi T, Linert W. Fluorescence spectra of Fe(II) spin crossover complexes with 2,6-bis(benzimidazole-2′-yl)pyridine. Chemical Physics, 2002, 277(1): 21–30

[36]

Faulmann C, Jacob K, Dorbes S, Lampert S, Malfant I, Doublet M L, Valade L, Real J A. Electrical conductivity and spin crossover: A new achievement with a metal bis dithiolene complex. Inorganic Chemistry, 2007, 46(21): 8548–8559

[37]

Dorbes S, Valade L, Real J A, Faulmann C. [Fe(sal2-trien)][Ni(dmit)2]: Towards switchable spin crossover molecular conductors. Chemical Communications, 2005, (1): 69–71

[38]

Chen Y C, Meng Y, Ni Z P, Tong M L. Synergistic electrical bistability in a conductive spin crossover heterostructure. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(5): 945–949

[39]

Ohkoshi S I, Imoto K, Tsunobuchi Y, Takano S, Tokoro H. Light-induced spin-crossover magnet. Nature Chemistry, 2011, 3(7): 564–569

[40]

Suleimanov I, Kraieva O, Sánchez Costa J, Fritsky I O, Molnár G, Salmon L, Bousseksou A. Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(19): 5026–5032

[41]

Kraieva O, Suleimanov I, Molnár G, Salmon L, Bousseksou A. CdTe quantum dot fluorescence modulation by spin crossover. Magnetochemistry, 2016, 2(1): 11

[42]

Quintero C M, Gural’skiy I A, Salmon L, Molnar G, Bergaud C, Bousseksou A. Soft lithographic patterning of spin crossover complexes. Part 1: Fluorescent detection of the spin transition in single nano-objects. Journal of Materials Chemistry, 2012, 22(9): 3745–3751

[43]

Weber B. Synthesis of coordination polymer nanoparticles using self-assembled block copolymers as template. Chemistry, 2017, 23(72): 18093–18100

[44]

Klimm O, Göbel C, Rosenfeldt S, Puchtler F, Miyajima N, Marquardt K, Drechsler M, Breu J, Förster S, Weber B. Synthesis of Fe(L)(bipy)n spin crossover nanoparticles using blockcopolymer micelles. Nanoscale, 2016, 8(45): 19058–19065

[45]

Fitzpatrick A J, O’Connor H M, Morgan G G. A room temperature spin crossover ionic liquid. Dalton Transactions, 2015, 44(48): 20839–20842

[46]

Okuhata M, Funasako Y, Takahashi K, Mochida T. A spin-crossover ionic liquid from the cationic iron(III) Schiff base complex. Chemical Communications, 2013, 49(69): 7662–7664

[47]

Liu X, Manzur C, Novoa N, Celedón S, Carrillo D, Hamon J R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 2018, 357: 144–172

[48]

Altomare A, Burla M C, Camalli M, Cascarano G L, Giacovazzo C, Guagliardi A, Moliterni A G G, Polidori G, Spagna R. SIR97: A new tool for crystal structure determination and refinement. Journal of Applied Crystallography, 1999, 32(1): 115–119

[49]

Sheldrick G M. A short history of SHELX. Acta Crystallographica. Section A, Foundations of Crystallography, 2008, 64(1): 112–122

[50]

Farrugia L. ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 1997, 30(5): 565

[51]

Johnson C K, Burnett M N. ORTEP-III. Oak-Ridge: Oak-Ridge National Laboratory, 1996

[52]

Keller E. Schakal-99. Freiburg: University of Freiburg, 1999

[53]

Kahn O. Molecular Magnetism. New York: VCH, 1993, 1–380

[54]

Becker H G O. Organikum, 19th ed. Berlin: Johann Ambrosius Barth, 1993, 1–786

[55]

Jäger E G. “Bioinspired” metal complexes of macrocyclic [N42-] and open chain [N2O22-] Schiff base ligands—a link between porphyrins and salicylaldimines. In: Chemistry At The Beginning of The Third Millennium: Molecular Design, Supramolecules, Nanotechnology, And Beyond. Berlin: Springer, 2000, 103–138

[56]

Jäger E G. Koordinierte und freie Estergruppen in stabilen Metallchelaten. Zeitschrift fur Anorganische und Allgemeine Chemie, 1967, 349: 139–150

[57]

Claisen L. Untersuchungen über die Oxymethylenverbindungen. Justus Liebigs Annalen der Chemie, 1897, 297(1-2): 1–98

[58]

Weber B, Betz R, Bauer W, Schlamp S. Crystal structure of iron(II) acetate. Zeitschrift fur Anorganische und Allgemeine Chemie, 2011, 637(1): 102–107

[59]

Holleman A F, Wiberg E, Wiberg N. Lehrbuch der anorganischen Chemie, 101st ed. Berlin: de Gruyter, 1995, 1–2149

[60]

Weber B, Jäger E-G. Structure and magnetic properties of iron(II/III) complexes with N2O22- coordinating Schiff base like ligands. European Journal of Inorganic Chemistry, 2009, 2009: 465–477

[61]

Bauer W, Ossiander T, Weber B.A promising new Schiff base-like ligand for the synthesis of octahedral iron(II) spin crossover complexes. Zeitschrift für Naturforschung B, 2010, 2010: 323–328

[62]

Lochenie C, Heinz J, Milius W, Weber B. Iron(II) spin crossover complexes with diaminonaphthalene-based Schiff base-like ligands: Mononuclear complexes. Dalton Transactions, 2015, 44(41): 18065–18077

[63]

Dankhoff K, Weber B. Novel Cu(II) complexes with NNO-Schiff base-like ligands—structures and magnetic properties. CrystEngComm, 2018, 20(6): 818–828

[64]

Weber B, Kaps E, Obel J, Bauer W. Synthesis and magnetic properties of new octahedral iron(II) complexes. Zeitschrift fur Anorganische und Allgemeine Chemie, 2008, 634(8): 1421–1426

[65]

Weber B, Obel J, Henner-Vasquez D, Bauer W.Two new iron(II) spin-crossover complexes with N4O2 coordination sphere and spin transition around room temperature. European Journal of Inorganic Chemistry, 2009, 2009: 5527–5534

[66]

Pfaffeneder T M, Thallmair S, Bauer W, Weber B. Complete and incomplete spin transitions in 1D chain iron(II) compounds. New Journal of Chemistry, 2011, 35(3): 691–700

[67]

Bauer W, Pfaffeneder T, Achterhold K, Weber B. Complete two-step spin-transition in a 1D chain iron(II) complex with a 110-K wide intermediate plateau. European Journal of Inorganic Chemistry, 2011, 2011: 3183–3192

[68]

Schlamp S, Thoma P, Weber B. New octahedral, head-tail iron(II) complexes with spin crossover properties. European Journal of Inorganic Chemistry, 2012, 2012: 2759–2768

[69]

Weber B. Spin crossover complexes with N4O2 coordination sphere—the influence of covalent linkers on cooperative interactions. Coordination Chemistry Reviews, 2009, 253(19–20): 2432–2449

[70]

Göbel C, Klimm O, Puchtler F, Rosenfeldt S, Förster S, Weber B. Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles. Beilstein Journal of Nanotechnology, 2017, 8: 1318–1327

[71]

Nowak R, Bauer W, Ossiander T, Weber B. Slow self-assembly favours hysteresis above room temperature for an iron(II) 1D-chain spin-crossover complex. European Journal of Inorganic Chemistry, 2013, 2013: 975–983

[72]

Weber B, Kaps E S, Desplanches C, Létard J-F. Quenching the hysteresis in single crystals of a 1D chain iron(II) spin crossover complex. European Journal of Inorganic Chemistry, 2008, 2008: 2963–2966

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (431KB)

Supplementary files

FCE-18030-OF-BW_suppl_1

2075

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/