Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis

Andrea P. Reverberi , P.S. Varbanov , M. Vocciante , B. Fabiano

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (4) : 878 -892.

PDF (305KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (4) : 878 -892. DOI: 10.1007/s11705-018-1744-5
REVIEW ARTICLE
REVIEW ARTICLE

Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis

Author information +
History +
PDF (305KB)

Abstract

A survey addressing the uses of bismuth oxide in photocatalysis is presented. The richness of literature on such a specific topic proves the growing importance of this compound as a valid tool in pollution abatement and environmental decontamination. Many research groups have focused their activity on how to improve the photocatalytic properties of this semiconductor and several solutions have been adopted in the synthesis method, often based on wet-chemical processes. The impressive development of nanoscience helped in understanding and identifying process variables and operative conditions aiming at optimizing the yield of this promising photocatalytic material in the utilization of solar energy.

Graphical abstract

Keywords

photocatalysis / visible light / bismuth compounds / nanotechnology / environmental remediation / decontamination / pollution abatement

Cite this article

Download citation ▾
Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis. Front. Chem. Sci. Eng., 2018, 12(4): 878-892 DOI:10.1007/s11705-018-1744-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bagatin R, Klemeš J J, Reverberi A P, Huisingh D. Conservation and improvements in water resource management: A global challenge. Journal of Cleaner Production, 2014, 77: 1–9

[2]

Van-DalÉ S, Bouallou C. Design and simulation of a methanol production plant from CO2 hydrogenation. Journal of Cleaner Production, 2013, 57: 38–45

[3]

Yu L, Ruan S, Xu X, Zou R, Hu J. One-dimensional nanomaterial-assembled macroscopic membranes for water treatment. Nano Today, 2017, 17: 79–95

[4]

Pascariu V, Avadanei O, Gasner P, Stoica I, Reverberi A P, Mitoseriu L. Preparation and characterization of PbTiO 3-epoxy resin compositionally graded thick films. Phase Transitions, 2013, 86(7): 715–725

[5]

Wang J, Gu H. Novel metal nanomaterials and their catalytic applications. Molecules, 2015, 20(9): 17070–17092

[6]

Mehring M. From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coordination Chemistry Reviews, 2007, 251(7-8): 974–1006

[7]

Koziorowski J, Stanciu A E, Gómez-Vallejo V, Llop J. Radiolabeled nanoparticles for cancer diagnosis and therapy. Anti-cancer Agents in Medicinal Chemistry, 2017, 17(3): 333–354

[8]

Zhang X D, Chen J, Min Y, Park G B, Shen X, Song S S, Sun Y M, Wang H, Long W, Xie J, Gao K, Zhang L, Fan S, Fan F, Jeong U. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Advanced Functional Materials, 2014, 24(12): 1718–1729

[9]

Debbage P, Jaschke W. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 2008, 130(5): 845–875

[10]

Hernández-Rivera M, Kumar I, Cho S Y, Cheong B Y, Pulikkathara M X, Moghaddam S E, Whitmire K H, Wilson L J. High-performance hybrid Bismuth-carbon nanotube based contrast agent for X-ray CT imaging. ACS Applied Materials & Interfaces, 2017, 9(7): 5709–5716

[11]

Fabiano B, Pistritto F, Reverberi A, Palazzi E. Ethylene-air mixtures under flowing conditions: A model-based approach to explosion conditions. Clean Technologies and Environmental Policy, 2015, 17(5): 1261–1270

[12]

Solisio C, Reverberi A P, Del Borghi A, Dovi' V G. Inverse estimation of temperature profiles in landfills using heat recovery fluids measurements. Journal of Applied Mathematics, 2012, 2012: 747410

[13]

Palazzi E, Perego P, Fabiano B. Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor. Chemical Engineering Science, 2002, 57(18): 3819–3830

[14]

Palazzi E, Caviglione C, Reverberi A P, Fabiano B. A short-cut analytical model of hydrocarbon pool fire of different geometries, with enhanced view factor evaluation. Process Safety and Environmental Protection, 2017, 110: 89–101

[15]

Abu-Dief A M, Mohamed W S. α-Bi2O3 nanorods: Synthesis, characterization and UV-photocatalytic activity. Materials Research Express, 2017, 4(3): 035039

[16]

Ding S, Niu J, Bao Y, Hu L. Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi2O3/Bi2O2CO3/Sr6Bi2O9 photocatalyst. Journal of Hazardous Materials, 2013, 262: 812–818

[17]

Liu X, Deng H, Yao W, Jiang Q, Shen J. Preparation and photocatalytic activity of Y-doped Bi2O3. Journal of Alloys and Compounds, 2015, 651: 135–142

[18]

Sudrajat H. Cu(II)/Bi2O3 photocatalysis for toxicity reduction of atrazine in water environment under different light wavelengths. Environmental Processes, 2017, 4(2): 439–449

[19]

Linsebiegler A L, Lu G, Yates J T Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results. Chemical Reviews, 1995, 95(3): 735–758

[20]

Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth doped TiO2 nanoparticles. Journal of Catalysis, 2002, 207(2): 151–157

[21]

Drache M, Roussel P, Wignacourt J P. Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3. Chemical Reviews, 2007, 107(1): 80–96

[22]

Xie J, Li L, Tian C, Han C, Zhao D. Template-free synthesis of hierarchical constructed flower-like d-Bi2O3 microspheres with photocatalytic performance. Micro & Nano Letters, 2012, 7(7): 651–653

[23]

Sanna S, Esposito V, Andreasen J W, Hjelm J, Zhang W, Kasama T, Simonsen S B, Christensen M, Linderoth S, Pryds N. Enhancement of the chemical stability in confined  d-Bi2O3. Nature Materials, 2015, 14(5): 500–504

[24]

Wang F, Cao K, Zhang Q, Gong X, Zhou Y. A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts. Journal of Molecular Modeling, 2014, 20(11): 2506

[25]

Ho C H, Chan C H, Huang Y S, Tien L C, Chao L C. The study of optical band edge property of bismuth oxide nanowires α-Bi2O3. Optics Express, 2013, 21(10): 11965–11972

[26]

Zhang G, Zhang X, Wu Y, Shi W, Guan W. Rapid microwave-assisted synthesis of Bi2O3 tubes and photocatalytic properties for antibiotics. Micro & Nano Letters, 2013, 8(4): 177–180

[27]

Yuvakkumar R, Hong S I. Structural, compositional and textural properties of monoclinic α-Bi2O3 nanocrystals. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 144: 281–286

[28]

Iyyapushpam S, Nishanthi S T, Pathinettam Padiyan D. Synthesis of β-Bi2O3 towards the application of photocatalytic degradation of methyl orange and its instability. Journal of Physics and Chemistry of Solids, 2015, 81: 74–78

[29]

Schlesinger M, Weber M, Schulze S, Hietschold M, Mehring M. Metastable β-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. ChemistryOpen, 2013, 2(4): 146–155

[30]

Yan Y, Zhou Z, Cheng Y, Qiu L, Gao C, Zhou J. Template-free fabrication of α- and β-Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification. Journal of Alloys and Compounds, 2014, 605: 102–108

[31]

Xiao X, Hu R, Liu C, Xing C, Qian C, Zuo X, Nan J, Wang L. Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Applied Catalysis B: Environmental, 2013, 140–141: 433–443

[32]

Qiu Y, Yang M, Fan H, Zuo Y, Shao Y, Xu Y, Yang X, Yang S. Nanowires of α- and β-Bi2O3: Phase selective synthesis and application in photocatalysis. CrystEngComm, 2011, 13(6): 1843–1850

[33]

Hou J, Yang C, Wang Z, Zhou W, Jiao S, Zhu H. In situ synthesis of α-β phase heterojunctions on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2013, 142–143: 504–511

[34]

Astuti Y, Arnelli P, Fauziyah A, Nurhayati S, Wulansari A D, Andianingrum R, Widiyandari H, Bhaduri G A. Studying impact of different precipitating agents on crystal sructure, morphology, and photocatalytic activity of bismuth oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 2017, 12(3): 478–484

[35]

Jia B, Zhang J, Luan J, Li F, Han J. Synthesis and growth mechanism of various structures Bi2O3 via chemical precipitate method. Journal of Materials Science Materials in Electronics, 2017, 28(15): 11084–11090

[36]

Hu Y, Li D, Sun F, Weng Y, You S, Shao Y. Temperature-induced phase changes in bismuth oxides and efficient photodegradation of phenol and p-chlorophenol. Journal of Hazardous Materials, 2016, 301: 362–370

[37]

Wang W, Chen X, Liu G, Shen Z, Xia D, Wong P K, Yu J C. Monoclinic dibismuth tetraoxide: A new visible-light-driven photocatalyst for environmental remediation. Applied Catalysis B: Environmental, 2015, 176–177: 444–453

[38]

Sajjad S, Leghari S A K, Zhang J. Nonstoichiometric Bi2O3: Efficient visible light photocatalyst. RSC Advances, 2013, 3(5): 1363–1367

[39]

Azizian-Kalandaragh Y, Sedaghatdoust-Bodagh F, Habibi-Yangjeh A. Ultrasound-assisted preparation and characterization of β-Bi2O3 nanostructures: Exploring the photocatalytic activity against rhodamine B. Superlattices and Microstructures, 2015, 81: 151–160

[40]

Zhong S, Zou S, Peng X, Ma J, Zhang F. Effects of calcination temperature on preparation and properties of europium-doped bismuth oxide as visible light catalyst. Journal of Sol-Gel Science and Technology, 2015, 74(1): 220–226

[41]

Xue S, He H, Fan Q, Yu C, Yang K, Huang W, Zhou Y, Xie Y. La/Ce-codoped Bi2O3 composite photocatalysts with high photocatalytic performance in removal of high concentration dye. Journal of Environmental Sciences, 2017, 60: 70–77

[42]

Wu S, Fang J, Xua W, Cen C. Hydrothermal synthesis, characterization of visible-light-driven α-Bi2O3 enhanced by Pr3+ doping. Journal of Chemical Technology and Biotechnology, 2013, 88(10): 1828–1835

[43]

Viruthagiri G, Kannan P. Visible light mediated photocatalytic activity of cobalt doped Bi2O3 nanoparticles. Journal of Materials Research and Technology, 2017 (in press) doi:10.1016/j.jmrt.2017.06.011

[44]

Qin W, Qi J, Wu X. Photocatalytic property of Cu2+-doped Bi2O3 films under visible light prepared by the sol-gel method. Vacuum, 2014, 107: 204–207

[45]

Raza W, Bahnemann D, Muneer M. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide. Catalysis Today, 2018, 300: 89–98

[46]

Luo X, Zhu G, Peng J, Wei X, Hojamberdiev M, Jin L, Liu P. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation. Applied Surface Science, 2015, 351: 260–269

[47]

Lim H, Rawal S B. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation. Progress in Natural Science: Materials International, 2017, 27(3): 289–296

[48]

Sharma R, Khanuja M, Sharma S N, Sinha O P. Reduced band gap & charge recombination rate in Se doped α-Bi2O3 leads to enhanced photoelectrochemical and photocatalytic performance: Theoretical & experimental insight. International Journal of Hydrogen Energy, 2017, 42(32): 20638–20648

[49]

Liang J, Zhu G, Liu P, Luo X, Tan C, Jin L, Zhou J. Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity. Superlattices and Microstructures, 2014, 72: 272–282

[50]

Li J Z, Zhong J, Zeng J, Feng F, He J. Feng, He J. Improved photocatalytic activity of dysprosium-doped Bi2O3 prepared by sol-gel method. Materials Science in Semiconductor Processing, 2013, 16(2): 379–384

[51]

Li Y, Zhang Z, Zhang Y, Sun X, Zhang J, Wang C, Peng Z, Si H. Preparation of Ag doped Bi2O3 nanosheets with highly enhanced visible light photocatalytic performances. Ceramics International, 2014, 40(8): 13275–13280

[52]

Faisal M, Ibrahim A A, Bouzid H, Al-Sayari S A, Al-Assiri M S, Ismail A A. Hydrothermal synthesis of Sr-doped α-Bi2O3 nanosheets as highly efficient photocatalysts under visible light. Journal of Molecular Catalysis A: Chemical, 2014, 387: 69–75

[53]

Zhu G, Que W, Zhang J. Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation. Journal of Alloys and Compounds, 2011, 509(39): 9479–9486

[54]

Dai Y, Yin L. Synthesis and photocatalytic activity of Ag-Ti-Si ternary modified α-Bi2O3 nanoporous spheres. Materials Letters, 2015, 142: 225–228

[55]

Hu H, Xiao C, Lin X, Chen K, Li H, Zhang X. Controllable fabrication of heterostructured Au/Bi2O3 with plasmon effect for efficient photodegradation of rhodamine 6G. Journal of Experimental Nanoscience, 2017, 12(1): 33–44

[56]

Reddy J K, Srinivas B, Durga Kumari V D, Subrahmanyam M. Sm3+-doped Bi2O3 photocatalyst prepared by hydrothermal synthesis. ChemCatChem, 2009, 1: 492–496

[57]

Jiang S, Wang L, Hao W, Li W, Xin H, Wang W, Wang T. Visible-light photocatalytic activity of S-doped α-Bi2O3. Journal of Physical Chemistry C, 2015, 119: 14094–14101

[58]

Jiang H Y, Liu J, Cheng K, Sun W, Lin J. Enhanced visible light photocatalysis of Bi2O3 upon fluorination. Journal of Physical Chemistry C, 2013, 117(39): 20029–22003

[59]

Shang J, Gao Y, Hao W C, Jing X, Xin H J, Wang L, Feng H F, Wang T M. Enhancing visible-light photocatalytic activity of α-Bi2O3 via non-metal N and S doping. Chinese Physics B, 2014, 23(3): 038103

[60]

Ortiz-Quiñonez J L, Zumeta-Dubé I, Díaz D, Nava-Etzana N, Cruz-Zaragoza E, Santiago-Jacinto P. Bismuth oxide nanoparticles partially substituted with EuIII, MnIV, and SiIV: Structural, spectroscopic, and optical findings. Inorganic Chemistry, 2017, 56(6): 3394–3403

[61]

Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278

[62]

Ramandi S, Entezari M H, Ghows N. Sono-synthesis of novel magnetic nanocomposite (Ba-α-Bi2O3-g-Fe2O3) for the solar mineralization of amoxicillin in an aqueous solution. Physical Chemistry Research, 2017, 5(2): 253–268

[63]

Reverberi A P, Maga L, Cerrato C, Fabiano B. Membrane processes for water recovery and decontamination. Current Opinion in Chemical Engineering, 2014, 6: 75–82

[64]

Margha F H, Abdel-Wahed M S, Gad-Allah T A. Nanocrystalline Bi2O3-B2O3-(MoO3 or V2O5) glass-ceramic systems for organic pollutants degradation. Ceramics International, 2015, 41(4): 5670–5676

[65]

Patil S P, Bethi B, Sonawane G H, Shrivastava V S, Sonawane S. Efficient adsorption and photocatalytic degradation of Rhodamine B dye over Bi2O3-bentonite nanocomposites: A kinetic study. Journal of Industrial and Engineering Chemistry, 2016, 34: 356–363

[66]

Patil S P, Shrivastava V S, Sonawane G H, Sonawane S H. Synthesis of novel Bi2O3-montmorillonite nanocomposite with enhanced photocatalytic performance in dye degradation. Journal of Environmental Chemical Engineering, 2015, 3(4): 2597–2603

[67]

Chew K H, Klemeš J J, Alwi S R W, Manan Z A, Reverberi A P. Total site heat integration considering pressure drops. Energies, 2015, 8(2): 1114–1137

[68]

Xie T, Liu C, Xu L, Yang J, Zhou W. Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. Journal of Physical Chemistry C, 2013, 117(46): 24601–24610

[69]

Xia D, Lo I M C. Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Research, 2016, 100: 393–404

[70]

Ren A, Liu C, Hong Y, Shi W, Lin S, Li P. Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures. Chemical Engineering Journal, 2014, 258: 301–308

[71]

Li J, Zhong J, He X, Huang S, Zeng J, He J, Shi W. Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3. Applied Surface Science, 2013, 284: 527–532

[72]

Ayekoe P Y, Robert D, Lanciné Goné D. TiO2/Bi2O3 photocatalysts for elimination of water contaminants. Part 1: Synthesis of α- and β-Bi2O3 nanoparticles. Environmental Chemistry Letters, 2015, 13(3): 327–332

[73]

Chakraborty A K, Hossain M E, Rhaman M M, Sobahan K M A. Fabrication of Bi2O3/TiO2 nanocomposites and their applications to the degradation of pollutants in air and water under visible-light. Journal of Environmental Sciences, 2014, 26(2): 458–465

[74]

Malligavathy M, Iyyapushpam S, Nishanthi S T, Pathinettam Padiyan D. Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange. Journal of Nanoparticle Research, 2017, 19(4): 144

[75]

Balachandran S, Swaminathan M. Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity. Journal of Physical Chemistry C, 2012, 116(50): 26306–26312

[76]

Štengl V, Henych J, Slušná M, Tolasz J, Zetková K. ZnO/Bi2O3 nanowire composites as a new family of photocatalysts. Powder Technology, 2015, 270: 83–91

[77]

Chen C Y, Weng J C, Chen J H, Ma S H, Chen K H, Horng T L, Tsay C Y, Chang C J, Lin C K, Wug J J. Photocatalyst ZnO-doped Bi2O3 powder prepared by spray pyrolysis. Powder Technology, 2015, 272: 316–321

[78]

Wang X, Ren P, Fan H. Room-temperature solid state synthesis of ZnO/Bi2O3 heterojunction and their solar light photocatalytic performance. Materials Research Bulletin, 2015, 64: 82–87

[79]

Abdelkader E, Nadjia L, Ahmed B. Synthesis, characterization and UV-A light photocatalytic activity of 20 wt% SrO-CuBi2O4 composite. Applied Surface Science, 2012, 258(12): 5010–5024

[80]

Abdulkarem A M, Aref A A, Abdulhabeeb A, Li Y F, Yu Y. Synthesis of Bi2O3/Cu2O nanoflowers by hydrothermal method and its photocatalytic activity enhancement under simulated sunlight. Journal of Alloys and Compounds, 2013, 560: 132–141

[81]

Hossain M K, Samu G F, Gandha K, Santhanagopalan S, Ping Liu J, Janáky C, Rajeshwar K. Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and Its nanocomposites with CuO and α-Bi2O3. Journal of Physical Chemistry C, 2017, 121(15): 8252–8261

[82]

Xie Y, Zhang Y, Yang G, Liu C, Wang J. Hydrothermal synthesis of CuBi2O4 nanosheets and their photocatalytic behavior under visible light irradiation. Materials Letters, 2013, 107: 291–294

[83]

Li T, Luo S. Hydrothermal synthesis of Ag2O/Bi2O3 microspheres for efficient photocatalytic degradation of Rhodamine B under visible light irradiation. Ceramics International, 2015, 41(10): 13135–13146

[84]

Cheng H, Hou J, Zhu H, Guo X M. Plasmonic Z-scheme α/β-Bi2O3-Ag-AgCl photocatalyst with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4(78): 41622–41630

[85]

Gou W, Wu P, Jiang D, Ma X. Synthesis of AgBr@Bi2O3 composite with enhanced photocatalytic performance under visible light. Journal of Alloys and Compounds, 2015, 646: 437–445

[86]

D’Angelo D, Filice S, Scarangella A, Iannazzo D, Compagnini G, Scalese S. Bi2O3/Nexar® polymer nanocomposite membranes for azo dyes removal by UV-vis or visible light irradiation. Catalysis Today, 2017 (in press) doi: 10.1016/j.cattod.2017.12.013

[87]

Que Q, Xing Y, He Z, Yang Y, Yin X, Que W. Bi2O3/Carbon quantum dots heterostructured photocatalysts with enhanced photocatalytic activity. Materials Letters, 2017, 209: 220–223

[88]

Dang X, Zhang X, Chen Y, Dong X, Wang G, Ma C, Zhang X, Ma H, Xue M. Preparation of β-Bi2O3/g-C3N4 nanosheet p–n junction for enhanced photocatalytic ability under visible light illumination. Journal of Nanoparticle Research, 2015, 17(2): 1–8

[89]

Chen D, Wu S, Fang J, Lu S, Zhou G, Feng W, Yang F, Chen Y, Fang Z. A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Separation and Purification Technology, 2018, 193: 232–241

[90]

Zhang J, Hu Y, Jiang X, Chen S, Meng S, Fu X. Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. Journal of Hazardous Materials, 2014, 280: 713–722

[91]

Han S, Li J, Yang K, Lin J. Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Chinese Journal of Catalysis, 2015, 36(12): 2119–2126

[92]

Cheng L, Liu X, Kang Y. Bi5O7I/Bi2O3: A novel heterojunction-structured visible light-driven photocatalyst. Materials Letters, 2014, 134: 218–221

[93]

Chen L, Zhang Q, Huang R, Yin S F, Luo S L, Au C T. Porous peanut-like Bi2O3-BiVO4 composites with heterojunctions: one-step synthesis and their photocatalytic properties. Dalton Transactions, 2012, 41(31): 9513–9518

[94]

Chen L, He J, Yuan Q, Liu Y, Au C T, Yin S F. Environmentally benign synthesis of branched Bi2O3-Bi2S3 photocatalysts by an etching and re-growth method. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(3): 1096–1102

[95]

Charanpahari A, Umare S S, Sasikala R. Enhanced photodegradation of dyes on Bi2O3 microflakes: Effect of GeO2 addition on photocatalytic activity. Separation and Purification Technology, 2014, 133: 438–442

[96]

Zeng J, Li J, Zhong J, Huang S, Shi W, He J. Synthesis,characterization and solar photocatalytic performance of In2O3-decorated Bi2O3. Materials Science in Semiconductor Processing, 2013, 16(6): 1808–1812

[97]

Peng Y, Yan M, Chen Q G, Fan C M, Zhou H Y, Xu A W. Novel one-dimensional Bi2O3-Bi2WO6 p-n hierarchical heterojunction with enhanced photocatalytic activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(22): 8517–8524

[98]

Ma J, Zhang L Z, Wang Y H, Lei S L, Luo X B, Chen S H, Zeng G S, Zou J P, Luo S L, Au C T. Mechanism of 2,4-dinitrophenol photocatalytic degradation by z-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chemical Engineering Journal, 2014, 251: 371–380

[99]

Chen S, Hu Y, Ji L, Jiang X, Fu X. Preparation and characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism. Applied Surface Science, 2014, 292: 357–366

[100]

Larosa C, Salerno M, Nanni P, Reverberi A P. Cobalt cementation in an ethanol-water system: Kinetics and morphology of metal aggregates. Industrial & Engineering Chemistry Research, 2012, 51(51): 16564–16572

[101]

Reverberi A P, Kuznetsov N T, Meshalkin V P, Salerno M, Fabiano B. Systematical analysis of chemical methods in metal nanoparticles synthesis. Theoretical Foundations of Chemical Engineering, 2016, 50(1): 59–66

[102]

Toccafondi C, Dante S, Reverberi A P, Salerno M. Biomedical applications of anodic porous alumina. Current Nanoscience, 2015, 11(5): 572–580

[103]

Reverberi A P, Vocciante M, Lunghi E, Pietrelli L, Fabiano B. New trends in the synthesis of nanoparticles by green methods. Chemical Engineering Transactions, 2017, 61: 667–672

[104]

Meng X, Zhang Z. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. Journal of Molecular Catalysis A: Chemical, 2016, 423: 533–549

[105]

Li S, Ye G, Chen G. Low-temperature preparation and characterization of nanocrystalline anatase TiO2. Journal of Physical Chemistry C, 2009, 113(10): 4031–4037

[106]

Yong J Y, Klemeš J J, Varbanov P S, Huisingh D. Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. Journal of Cleaner Production, 2016, 111: 1–16

[107]

Fan Y V, Varbanov P S, Klemeš J J, Nemet A. Process efficiency optimisation and integration for cleaner production. Journal of Cleaner Production, 2018, 174: 177–183

[108]

Reverberi A P, Klemeš J J, Varbanov P S, Fabiano B. A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. Journal of Cleaner Production, 2016, 136: 72–80

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (305KB)

3275

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/