Crystal-to-crystal transformation from the triclinic to the cubic crystal system by partial desolvation
Qianqian Guo, Irmgard Kalf, Ulli Englert
Crystal-to-crystal transformation from the triclinic to the cubic crystal system by partial desolvation
Diffusion reaction of the labile building block Mg(acacCN)2 (acacCN= 3-cyanoacetylacetonate) with silver salts leads to a series of solvated Mg/Ag bimetallic coordination polymers with composition [Mg(acacCN)3Ag]·solvent. Despite their common stoichiometry, the topology of these polymers depends on the solvent of crystallization. The two-dimensional coordination compound [Mg(acacCN)3Ag]·4CHCl3 in space group P is obtained as platelet-shaped crystals from a mixture of methanol and chloroform. When kept in the reaction mixture, these thin plates within one week convert to isometric tetrahedral crystals of the 3D network [Mg(acacCN)3Ag]·2CHCl3 in the cubic space group P213. The transformation reaction proceeds via dissolution and recrystallization. The co-crystallized solvent molecules play an important role for stabilizing the target structure: They subtend Cl···Cl contacts and interact via non-classical C–H···O hydrogen bonds with the coordination framework. In the new cubic coordination network, both Mg(II) and Ag(I) adopt octahedral coordination, with unprecedented face-sharing by bridging O atoms of three acetylacetonato moieties. Prolonged standing of [Mg(acacCN)3Ag]·2CHCl3 in the reaction medium leads to further degradation, under formation of [Ag(acacCN)].
ditopic ligand / substituted acetylacetone / desolvation / diffraction
[1] |
Burrows A D. Mixed-component metal–organic frameworks (MC-MOFs): Enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 2011, 13(11): 3623–3642
CrossRef
Google scholar
|
[2] |
Kondracka M, Englert U. Bimetallic coordination polymers via combination of substitution-inert building blocks and labile connectors. Inorganic Chemistry, 2008, 47(22): 10246–10257
CrossRef
Pubmed
Google scholar
|
[3] |
Merkens C, Englert U. Ordered bimetallic coordination networks featuring rare earth and silver cations. Dalton Transactions, 2012, 41(15): 4664–4673
CrossRef
Pubmed
Google scholar
|
[4] |
Merkens C, Becker N, Lamberts K, Englert U. Bimetallic coordination networks based on Al(acacCN)3: a building block between inertness and lability. Dalton Transactions, 2012, 41(28): 8594–8599
CrossRef
Pubmed
Google scholar
|
[5] |
Burrows A D, Cassar K, Mahon M F, Warren J E. The stepwise formation of mixed-metal coordination networks using complexes of 3-cyanoacetylacetonate. Dalton Transactions, 2007, (24): 2499–2509
CrossRef
Pubmed
Google scholar
|
[6] |
Merkens C, Pecher O, Steuber F, Eisenhut S, Görne A, Haarmann F, Englert U. Crystal-to-crystal transformations in a seven-coordinated scandium complex. Zeitschrift fur Anorganische und Allgemeine Chemie, 2013, 639(2): 340–346
CrossRef
Google scholar
|
[7] |
Kremer M, Englert U. N Donor substituted acetylacetones—versatile ditopic ligands. Zeitschrift für Kristallographie-Crystalline Materials, 2018,
CrossRef
Google scholar
|
[8] |
Chen B, Fronczek F R, Maverick A W. Solvent-dependent 44 square grid and 64.82 NbO frameworks formed by Cu(Pyac)2 (bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)). Chemical Communications, 2003, (17): 2166–2167
CrossRef
Pubmed
Google scholar
|
[9] |
Chen B, Fronczek F R, Maverick A W. Porous Cu-Cd mixed-metal-organic frameworks constructed from Cu(Pyac)2 [Bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)]. Inorganic Chemistry, 2004, 43(26): 8209–8211
CrossRef
Pubmed
Google scholar
|
[10] |
Zhang Y, Chen B, Fronczek F R, Maverick A W. A nanoporous Ag-Fe mixed-metal-organic framework exhibiting single-crystal-to-single-crystal transformations upon guest exchange. Inorganic Chemistry, 2008, 47(11): 4433–4435
CrossRef
Pubmed
Google scholar
|
[11] |
Vreshch V D, Lysenko A B, Chernega A N, Sieler J, Domasevitch K V. Heterobimetallic Cd(Zn)/Be coordination polymers involving pyridyl functionalized beryllium diketonates. Polyhedron, 2005, 24(8): 917–926
CrossRef
Google scholar
|
[12] |
Vreshch V D, Lysenko A B, Chernega A N, Howard J A K, Krautscheid H, Sieler J, Domasevitch K V. Extended coordination frameworks incorporating heterobimetallic squares. Dalton Transactions, 2004, (18): 2899–2903
CrossRef
Pubmed
Google scholar
|
[13] |
Vreshch V D, Chernega A N, Howard J A K, Sieler J, Domasevitch K V. Two-step construction of molecular and polymeric mixed-metal Cu(Co)/Be complexes employing functionality of a pyridyl substituted acetylacetonate. Dalton Transactions, 2003, (9): 1707–1711
CrossRef
Google scholar
|
[14] |
Guo Q, Englert U. Neutral mixed-metal coordination polymers based on a ditopic acetylacetonate, Mg(ii) and Ag(i): Syntheses, characterization and solvent-dependent topologies. Dalton Transactions, 2017, 46(26): 8514–8523
CrossRef
Pubmed
Google scholar
|
[15] |
Silvernail C M, Yap G, Sommer R D, Rheingold A L, Day V W, Belot J A. An effective synthesis of alkyl b-cyano-a,g-diketones using chlorosulfonylisocyanate and a representative Cu(II) complex. Polyhedron, 2001, 20(26–27): 3113–3117
CrossRef
Google scholar
|
[16] |
Guo Q, Merkens C, Si R, Englert U. Crosslinking of the Pd(acacCN)2 building unit with Ag(I) salts: Dynamic 1D polymers and an extended 3D network. CrystEngComm, 2015, 17(23): 4383–4393
CrossRef
Google scholar
|
[17] |
Guo Q, Englert U. Controlled stepwise synthesis of a Cu-MOF: Transmetallation of a magnesium precursor to a three-dimensional framework with very high solvent content. Zeitschrift für Kristallographie-Crystalline Materials, 2017, 232(11): 759–765
|
[18] |
SAINT+ (version 7.68). Program for Reduction of Data Collected on Bruker CCD Area Detector Diffractometer, 2009
|
[19] |
Sheldrick G M. SADABS (version 2.03). Program for Empirical Absorption Correction of Area Detector Data, 2004
|
[20] |
Sheldrick G M. A short history of SHELX. Acta Crystallographica. Section A, Foundations and Advances, 2008, 64(1): 112–122
CrossRef
Pubmed
Google scholar
|
[21] |
Sheldrick G M. Crystal structure refinement with SHELXL. Acta Crystallographica. Section C, Structural Chemistry, 2015, 71(1): 3–8
CrossRef
Pubmed
Google scholar
|
[22] |
Flack H D. On enantiomorph-polarity estimation. Acta Crystallographica. Section A, Foundations and Advances, 1983, 39: 876–881
|
[23] |
Groom C R, Bruno I J, Lightfoot M P, Ward S C. The Cambridge Structural Database. Acta Crystallographica. Section B, Structural Science, Crystal Engineering and Materials, 2016, 72(2): 171–179
CrossRef
Pubmed
Google scholar
|
[24] |
CSD Version 5.39, including updates until Nov. 2017
|
[25] |
Du J, Cao M D, Feng S L, Su F, Sang X J, Zhang L C, You W S, Yang M, Zhu Z M. Two new preyssler-type polyoxometalate-based coordination polymers and their application in horseradish peroxidase immobilization. Chemistry, 2017, 23(58): 14614–14622
CrossRef
Pubmed
Google scholar
|
[26] |
Beichel W, Preiss U P, Benkmil B, Steinfeld G, Eiden P, Kraft A, Krossing I. Temperature dependent crystal structure analyses and ion volume determinations of organic salts. Zeitschrift fur Anorganische und Allgemeine Chemie, 2013, 639(12–13): 2153–2161
CrossRef
Google scholar
|
[27] |
Lang J P, Tatsumi K. Aggregation of the half-sandwich trisulfido complex of tungsten with silver ions: Synthesis of a cyanide-bridged helical polymer { [ ( η 5− C 5 M e 5)WS3]2 A g 5(C N)}∞ and a cyclic cluster [( η5−C5Me5) WS3Ag]4. Inorganic Chemistry, 1999, 38(6): 1364–1367
CrossRef
Pubmed
Google scholar
|
[28] |
Croizat P, Sculfort S, Welter R, Braunstein P. Hexa- and octanuclear heterometallic clusters with copper-, silver-, or gold-molybdenum bonds and d10-d10 interactions. Organometallics, 2016, 35(23): 3949–3958
CrossRef
Google scholar
|
[29] |
Sculfort S, Welter R, Braunstein P. Heterometallic
CrossRef
Pubmed
Google scholar
|
[30] |
Lang J P, Kawaguchi H, Tatsumi K. Synthesis of a heterobimetallic ladder polymer [( η5−C5Me5) WS3A g2Br]n. Inorganic Chemistry, 1997, 36(27): 6447–6449
CrossRef
Google scholar
|
[31] |
Sakane G, Shibahara T, Hou H, Liu Y, Xin X. Solid state synthesis and crystal structure of a novel cluster, [WS4Ag3 I(AsPh3)3](SAsPh3). Transition Metal Chemistry, 1996, 21(5): 398–400
CrossRef
Google scholar
|
[32] |
Sculfort S, Croizat P, Messaoudi A, Bénard M, Rohmer M M, Welter R, Braunstein P. Two-dimensional triangular and square heterometallic clusters: influence of the closed-shell d10 electronic configuration. Angewandte Chemie International Edition, 2009, 48(51): 9663–9667
CrossRef
Pubmed
Google scholar
|
[33] |
Jin Q H, Wang R, Hu K Y, Xiao Y L, Cui L N, Zhang C L. Construction of two novel tungsten(VI)–silver(I) mixed metal clusters controlled by bis(diphenylphosphino) methane and coordinated inorganic anions. Inorganica Chimica Acta, 2011, 367(1): 93–97
CrossRef
Google scholar
|
[34] |
Yang Y, Liu Q, Huang L, Kang B, Lu J. Assembly of heterometallic V2M2S4 cubane-like clusters. Syntheses and structures of [Et4N]2[V2M2S4(OC4H8dtc)2(SPh)2](M= Cu, Ag; dtc= dithiocarbamate). Journal of the Chemical Society, Chemical Communications, 1992, (20): 1512–1514
CrossRef
Google scholar
|
[35] |
Lang J P, Xin X Q, Cai J H, Kang B S. Studies on solid state reactions of coordination compounds. LXIII. Solid state synthesis of a series of tetranuclear Mo(W)-Ag mixed-metal clusters. Crystal structures of [(n-Bu)4N]3[MoOS3Ag3Br4] and [(n-Bu)4N]3. Chinese Journal of Chemistry, 1993, 11(5): 418–424
CrossRef
Google scholar
|
[36] |
O’Keeffe M, Peskov M A, Ramsden S J, Yaghi O M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 2008, 41(12): 1782–1789
CrossRef
Pubmed
Google scholar
|
[37] |
Dolomanov O V, Blake A J, Champness N R, Schröder M. OLEX: New software for visualization and analysis of extended crystal structures. Journal of Applied Crystallography, 2003, 36(5): 1283–1284
CrossRef
Google scholar
|
[38] |
Truong K N, Müller P, Dronskowski R, Englert U. Dynamic uptake and release of water in the mixed-metal EDTA complex M3[Yb(EDTA)(CO3)] (M= K, Rb, Cs). Crystal Growth & Design, 2017, 17(1): 80–88
CrossRef
Google scholar
|
[39] |
Creighton J A, Albrecht M G, Hester R E, Matthew J A D. The dependence of the intensity of Raman bands of pyridine at a silver electrode on the wavelength of excitation. Chemical Physics Letters, 1978, 55(1): 55–58
CrossRef
Google scholar
|
[40] |
Guo Q, Englert U. An acetylacetonate or a pyrazole? Both! 3-(3,5-Dimethyl-pyrazol-4-yl)pentane-2,4-dione as a ditopic ligand. Crystal Growth & Design, 2016, 16(9): 5127–5135
CrossRef
Google scholar
|
[41] |
Cohen M D, Schmidt G M J. Topochemistry. Part I. A survey. Journal of the Chemical Society, 1964: 1996–2000
CrossRef
Google scholar
|
/
〈 | 〉 |