Crystal-to-crystal transformation from the triclinic to the cubic crystal system by partial desolvation

Qianqian Guo, Irmgard Kalf, Ulli Englert

PDF(263 KB)
PDF(263 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 433-439. DOI: 10.1007/s11705-018-1743-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Crystal-to-crystal transformation from the triclinic to the cubic crystal system by partial desolvation

Author information +
History +

Abstract

Diffusion reaction of the labile building block Mg(acacCN)2 (acacCN= 3-cyanoacetylacetonate) with silver salts leads to a series of solvated Mg/Ag bimetallic coordination polymers with composition [Mg(acacCN)3Ag]·solvent. Despite their common stoichiometry, the topology of these polymers depends on the solvent of crystallization. The two-dimensional coordination compound [Mg(acacCN)3Ag]·4CHCl3 in space group P1 is obtained as platelet-shaped crystals from a mixture of methanol and chloroform. When kept in the reaction mixture, these thin plates within one week convert to isometric tetrahedral crystals of the 3D network [Mg(acacCN)3Ag]·2CHCl3 in the cubic space group P213. The transformation reaction proceeds via dissolution and recrystallization. The co-crystallized solvent molecules play an important role for stabilizing the target structure: They subtend Cl···Cl contacts and interact via non-classical C–H···O hydrogen bonds with the coordination framework. In the new cubic coordination network, both Mg(II) and Ag(I) adopt octahedral coordination, with unprecedented face-sharing by bridging O atoms of three acetylacetonato moieties. Prolonged standing of [Mg(acacCN)3Ag]·2CHCl3 in the reaction medium leads to further degradation, under formation of [Ag(acacCN)].

Graphical abstract

Keywords

ditopic ligand / substituted acetylacetone / desolvation / diffraction

Cite this article

Download citation ▾
Qianqian Guo, Irmgard Kalf, Ulli Englert. Crystal-to-crystal transformation from the triclinic to the cubic crystal system by partial desolvation. Front. Chem. Sci. Eng., 2018, 12(3): 433‒439 https://doi.org/10.1007/s11705-018-1743-6

References

[1]
Burrows A D. Mixed-component metal–organic frameworks (MC-MOFs): Enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 2011, 13(11): 3623–3642
CrossRef Google scholar
[2]
Kondracka M, Englert U. Bimetallic coordination polymers via combination of substitution-inert building blocks and labile connectors. Inorganic Chemistry, 2008, 47(22): 10246–10257
CrossRef Pubmed Google scholar
[3]
Merkens C, Englert U. Ordered bimetallic coordination networks featuring rare earth and silver cations. Dalton Transactions, 2012, 41(15): 4664–4673
CrossRef Pubmed Google scholar
[4]
Merkens C, Becker N, Lamberts K, Englert U. Bimetallic coordination networks based on Al(acacCN)3: a building block between inertness and lability. Dalton Transactions, 2012, 41(28): 8594–8599
CrossRef Pubmed Google scholar
[5]
Burrows A D, Cassar K, Mahon M F, Warren J E. The stepwise formation of mixed-metal coordination networks using complexes of 3-cyanoacetylacetonate. Dalton Transactions, 2007, (24): 2499–2509
CrossRef Pubmed Google scholar
[6]
Merkens C, Pecher O, Steuber F, Eisenhut S, Görne A, Haarmann F, Englert U. Crystal-to-crystal transformations in a seven-coordinated scandium complex. Zeitschrift fur Anorganische und Allgemeine Chemie, 2013, 639(2): 340–346
CrossRef Google scholar
[7]
Kremer M, Englert U. N Donor substituted acetylacetones—versatile ditopic ligands. Zeitschrift für Kristallographie-Crystalline Materials, 2018,
CrossRef Google scholar
[8]
Chen B, Fronczek F R, Maverick A W. Solvent-dependent 44 square grid and 64.82 NbO frameworks formed by Cu(Pyac)2 (bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)). Chemical Communications, 2003, (17): 2166–2167
CrossRef Pubmed Google scholar
[9]
Chen B, Fronczek F R, Maverick A W. Porous Cu-Cd mixed-metal-organic frameworks constructed from Cu(Pyac)2 [Bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)]. Inorganic Chemistry, 2004, 43(26): 8209–8211
CrossRef Pubmed Google scholar
[10]
Zhang Y, Chen B, Fronczek F R, Maverick A W. A nanoporous Ag-Fe mixed-metal-organic framework exhibiting single-crystal-to-single-crystal transformations upon guest exchange. Inorganic Chemistry, 2008, 47(11): 4433–4435
CrossRef Pubmed Google scholar
[11]
Vreshch V D, Lysenko A B, Chernega A N, Sieler J, Domasevitch K V. Heterobimetallic Cd(Zn)/Be coordination polymers involving pyridyl functionalized beryllium diketonates. Polyhedron, 2005, 24(8): 917–926
CrossRef Google scholar
[12]
Vreshch V D, Lysenko A B, Chernega A N, Howard J A K, Krautscheid H, Sieler J, Domasevitch K V. Extended coordination frameworks incorporating heterobimetallic squares. Dalton Transactions, 2004, (18): 2899–2903
CrossRef Pubmed Google scholar
[13]
Vreshch V D, Chernega A N, Howard J A K, Sieler J, Domasevitch K V. Two-step construction of molecular and polymeric mixed-metal Cu(Co)/Be complexes employing functionality of a pyridyl substituted acetylacetonate. Dalton Transactions, 2003, (9): 1707–1711
CrossRef Google scholar
[14]
Guo Q, Englert U. Neutral mixed-metal coordination polymers based on a ditopic acetylacetonate, Mg(ii) and Ag(i): Syntheses, characterization and solvent-dependent topologies. Dalton Transactions, 2017, 46(26): 8514–8523
CrossRef Pubmed Google scholar
[15]
Silvernail C M, Yap G, Sommer R D, Rheingold A L, Day V W, Belot J A. An effective synthesis of alkyl b-cyano-a,g-diketones using chlorosulfonylisocyanate and a representative Cu(II) complex. Polyhedron, 2001, 20(26–27): 3113–3117
CrossRef Google scholar
[16]
Guo Q, Merkens C, Si R, Englert U. Crosslinking of the Pd(acacCN)2 building unit with Ag(I) salts: Dynamic 1D polymers and an extended 3D network. CrystEngComm, 2015, 17(23): 4383–4393
CrossRef Google scholar
[17]
Guo Q, Englert U. Controlled stepwise synthesis of a Cu-MOF: Transmetallation of a magnesium precursor to a three-dimensional framework with very high solvent content. Zeitschrift für Kristallographie-Crystalline Materials, 2017, 232(11): 759–765
[18]
SAINT+ (version 7.68). Program for Reduction of Data Collected on Bruker CCD Area Detector Diffractometer, 2009
[19]
Sheldrick G M. SADABS (version 2.03). Program for Empirical Absorption Correction of Area Detector Data, 2004
[20]
Sheldrick G M. A short history of SHELX. Acta Crystallographica. Section A, Foundations and Advances, 2008, 64(1): 112–122
CrossRef Pubmed Google scholar
[21]
Sheldrick G M. Crystal structure refinement with SHELXL. Acta Crystallographica. Section C, Structural Chemistry, 2015, 71(1): 3–8
CrossRef Pubmed Google scholar
[22]
Flack H D. On enantiomorph-polarity estimation. Acta Crystallographica. Section A, Foundations and Advances, 1983, 39: 876–881
[23]
Groom C R, Bruno I J, Lightfoot M P, Ward S C. The Cambridge Structural Database. Acta Crystallographica. Section B, Structural Science, Crystal Engineering and Materials, 2016, 72(2): 171–179
CrossRef Pubmed Google scholar
[24]
CSD Version 5.39, including updates until Nov. 2017
[25]
Du J, Cao M D, Feng S L, Su F, Sang X J, Zhang L C, You W S, Yang M, Zhu Z M. Two new preyssler-type polyoxometalate-based coordination polymers and their application in horseradish peroxidase immobilization. Chemistry, 2017, 23(58): 14614–14622
CrossRef Pubmed Google scholar
[26]
Beichel W, Preiss U P, Benkmil B, Steinfeld G, Eiden P, Kraft A, Krossing I. Temperature dependent crystal structure analyses and ion volume determinations of organic salts. Zeitschrift fur Anorganische und Allgemeine Chemie, 2013, 639(12–13): 2153–2161
CrossRef Google scholar
[27]
Lang J P, Tatsumi K. Aggregation of the half-sandwich trisulfido complex of tungsten with silver ions: Synthesis of a cyanide-bridged helical polymer { [ ( η 5− C 5 M e 5)WS3]2 A g 5(C N)}∞ and a cyclic cluster [( η5−C5Me5) WS3Ag]4. Inorganic Chemistry, 1999, 38(6): 1364–1367
CrossRef Pubmed Google scholar
[28]
Croizat P, Sculfort S, Welter R, Braunstein P. Hexa- and octanuclear heterometallic clusters with copper-, silver-, or gold-molybdenum bonds and d10-d10 interactions. Organometallics, 2016, 35(23): 3949–3958
CrossRef Google scholar
[29]
Sculfort S, Welter R, Braunstein P. Heterometallicchains and clusters with gold-transition metal bonds: synthesis and interconversion. Inorganic Chemistry, 2010, 49(5): 2372–2382
CrossRef Pubmed Google scholar
[30]
Lang J P, Kawaguchi H, Tatsumi K. Synthesis of a heterobimetallic ladder polymer [( η5−C5Me5) WS3A g2Br]n. Inorganic Chemistry, 1997, 36(27): 6447–6449
CrossRef Google scholar
[31]
Sakane G, Shibahara T, Hou H, Liu Y, Xin X. Solid state synthesis and crystal structure of a novel cluster, [WS4Ag3 I(AsPh3)3](SAsPh3). Transition Metal Chemistry, 1996, 21(5): 398–400
CrossRef Google scholar
[32]
Sculfort S, Croizat P, Messaoudi A, Bénard M, Rohmer M M, Welter R, Braunstein P. Two-dimensional triangular and square heterometallic clusters: influence of the closed-shell d10 electronic configuration. Angewandte Chemie International Edition, 2009, 48(51): 9663–9667
CrossRef Pubmed Google scholar
[33]
Jin Q H, Wang R, Hu K Y, Xiao Y L, Cui L N, Zhang C L. Construction of two novel tungsten(VI)–silver(I) mixed metal clusters controlled by bis(diphenylphosphino) methane and coordinated inorganic anions. Inorganica Chimica Acta, 2011, 367(1): 93–97
CrossRef Google scholar
[34]
Yang Y, Liu Q, Huang L, Kang B, Lu J. Assembly of heterometallic V2M2S4 cubane-like clusters. Syntheses and structures of [Et4N]2[V2M2S4(OC4H8dtc)2(SPh)2](M= Cu, Ag; dtc= dithiocarbamate). Journal of the Chemical Society, Chemical Communications, 1992, (20): 1512–1514
CrossRef Google scholar
[35]
Lang J P, Xin X Q, Cai J H, Kang B S. Studies on solid state reactions of coordination compounds. LXIII. Solid state synthesis of a series of tetranuclear Mo(W)-Ag mixed-metal clusters. Crystal structures of [(n-Bu)4N]3[MoOS3Ag3Br4] and [(n-Bu)4N]3. Chinese Journal of Chemistry, 1993, 11(5): 418–424
CrossRef Google scholar
[36]
O’Keeffe M, Peskov M A, Ramsden S J, Yaghi O M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 2008, 41(12): 1782–1789
CrossRef Pubmed Google scholar
[37]
Dolomanov O V, Blake A J, Champness N R, Schröder M. OLEX: New software for visualization and analysis of extended crystal structures. Journal of Applied Crystallography, 2003, 36(5): 1283–1284
CrossRef Google scholar
[38]
Truong K N, Müller P, Dronskowski R, Englert U. Dynamic uptake and release of water in the mixed-metal EDTA complex M3[Yb(EDTA)(CO3)] (M= K, Rb, Cs). Crystal Growth & Design, 2017, 17(1): 80–88
CrossRef Google scholar
[39]
Creighton J A, Albrecht M G, Hester R E, Matthew J A D. The dependence of the intensity of Raman bands of pyridine at a silver electrode on the wavelength of excitation. Chemical Physics Letters, 1978, 55(1): 55–58
CrossRef Google scholar
[40]
Guo Q, Englert U. An acetylacetonate or a pyrazole? Both! 3-(3,5-Dimethyl-pyrazol-4-yl)pentane-2,4-dione as a ditopic ligand. Crystal Growth & Design, 2016, 16(9): 5127–5135
CrossRef Google scholar
[41]
Cohen M D, Schmidt G M J. Topochemistry. Part I. A survey. Journal of the Chemical Society, 1964: 1996–2000
CrossRef Google scholar

Acknowledgements

Financial support by China Scholarship Council (Qianqian. Guo) is gratefully acknowledged.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-018-1743-6 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(263 KB)

Accesses

Citations

Detail

Sections
Recommended

/