Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles
Juan Wang, Bin Jia, Zexiong Xie, Yunxiang Li, Yingjin Yuan
Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles
The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system has been used to improve prodeoxyviolacein (PDV) production in haploid yeast containing chromosome synV. To rapidly and continuously generate genome diversification with the desired phenotype, the multiplex SCRaMbLE iterative cycle strategy has been developed for the screening of high PDV production strains. Whole-genome sequencing analysis reveals large duplications, deletions, and even the whole genome duplications. The deletion of YER151C is proved to be responsible for the increase. This study demonstrates that artificial DNA rearrangement can be used to accelerate microbial evolution and the production of biobased chemicals.
synthetic biology / genome rearrangement / prodeoxyviolacein / SCRaMbLE / Saccharomyces cerevisiae
[1] |
Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J B, Lindstrom D L,
CrossRef
Google scholar
|
[2] |
Yue J X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P, Warringer J, Lagomarsino M C,
CrossRef
Google scholar
|
[3] |
Zhang Q J, Zhu T, Xia E H, Shi C, Liu Y L, Zhang Y, Liu Y, Jiang W K, Zhao Y J, Mao S Y,
|
[4] |
Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Research, 2003, 13(1): 37–45
CrossRef
Google scholar
|
[5] |
Redon R, Ishikawa S, Fitch K R, Feuk L, George H, Andrews T D, Fiegler H, Shapero M H, Carson A R, Chen W W,
CrossRef
Google scholar
|
[6] |
Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, Del Cardayré S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646
CrossRef
Google scholar
|
[7] |
Biot-Pelletier D, Martin V J J. Evolutionary engineering by genome shuffling. Applied Microbiology and Biotechnology, 2014, 98(9): 3877–3887
CrossRef
Google scholar
|
[8] |
Xie Z X, Li B Z, Mitchell L A, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng B X, Liu H M,
|
[9] |
Wu Y, Li B Z, Zhao M, Mitchell L A, Xie Z X, Lin Q H, Wang X, Xiao W H, Wang Y, Zhou X,
|
[10] |
Durán N, Justo G Z, Durán M, Brocchi M, Cordi L, Tasic L, Castro G R, Nakazato G. Advances in chromobacterium violaceum and properties of violacein–its main secondary metabolite: A review. Biotechnology Advances, 2016, 34(5): 1030–1045
CrossRef
Google scholar
|
[11] |
Melo P S, Maria S S, Vidal B C, Haun M, Durán N. Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cellular & Developmental Biology, 2000, 36(8): 539–543
CrossRef
Google scholar
|
[12] |
Konzen M, De Marco D, Cordova C A S, Vieira T O, Antônio R V, Creczynski-Pasa T B. Antioxidant properties of violacein: Possible relation on its biological function. Bioorganic & Medicinal Chemistry, 2006, 14(24): 8307–8313
CrossRef
Google scholar
|
[13] |
Durán N, Antonio R V, Haun M, Pilli R A. Biosynthesis of a trypanocide by Chromobacterium violaceum. World Journal of Microbiology & Biotechnology, 1994, 10(6): 686–690
CrossRef
Google scholar
|
[14] |
Antonisamy P, Ignacimuthu S. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine, 2010, 17(3–4): 300–304
CrossRef
Google scholar
|
[15] |
Lee M E, Aswani A, Han A S, Tomlin C J, Dueber J E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668–10678
CrossRef
Google scholar
|
[16] |
Lin Q, Jia B, Mitchell L A, Luo J C, Yang K, Zeller K I, Zhang W Q, Xu Z W, Stracquadanio G, Bader J S, Boeke J D, Yuan Y J. RADOM, an Efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synthetic Biology, 2014, 4(3): 213–220
CrossRef
Google scholar
|
[17] |
Liu D, Liu H, Li B Z, Qi H, Jia B, Zhou X, Du H X, Zhang W, Yuan Y J. Multigene pathway engineering with regulatory linkers (M-PERL). ACS Synthetic Biology, 2016, 5(12): 1535–1545
CrossRef
Google scholar
|
[18] |
Knaggs A R. The biosynthesis of shikimate metabolites. Natural Product Reports, 2003, 20(1): 119–136
CrossRef
Google scholar
|
[19] |
Zalatan J G, Lee M, Almeida E R, Gilbert L A, Whitehead E H, La Russa M, Tsai J C, Weissman J S, Dueber J E, Qi L S, Lim W A. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160(1–2): 339–350
CrossRef
Google scholar
|
[20] |
Jia B, Wu Y, Li B Z, Mitchell L A, Liu H, Pan S, Wang J, Zhang H R, Liu H M, Chen Z X,
CrossRef
Google scholar
|
[21] |
Querol A, Fernández-Espinar M T, Del Olmo M, Barrio E. Adaptive evolution of wine yeast. International Journal of Food Microbiology, 2003, 86(1–2): 3–10
CrossRef
Google scholar
|
[22] |
Gatti L, Hoe K L, Hayles J, Righetti S C, Carenini N B, Laura D, Kim D U, Park H O, Perego P. Ubiquitin-proteasome genes as targets for modulation of cisplatin sensitivity in fission yeast. BMC Genomics, 2011, 12(1): 44
CrossRef
Google scholar
|
[23] |
Dodgson S E, Santaguida S, Kim S, Sheltzer J, Amon A. The pleiotropic deubiquitinase UBP3 confers aneuploidy tolerance. Genes & Development, 2016, 30(20): 2259–2271
CrossRef
Google scholar
|
[24] |
Liu D, Li B Z, Liu H, Guo X J, Yuan Y J. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 117–125
CrossRef
Google scholar
|
[25] |
Wang R Z, Gu X L, Yao M D, Pan C H, Liu H, Xiao W H, Wang Y, Yuan Y J. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 89–99
CrossRef
Google scholar
|
[26] |
Yuan Y J, Wu J C, Wang X. Collaborations of China with the world in Synbio. Frontiers of Chemical Science and Engineering, 2017, 11(1): 1–2
CrossRef
Google scholar
|
/
〈 | 〉 |