Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles

Juan Wang, Bin Jia, Zexiong Xie, Yunxiang Li, Yingjin Yuan

PDF(376 KB)
PDF(376 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (4) : 806-814. DOI: 10.1007/s11705-018-1739-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles

Author information +
History +

Abstract

The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system has been used to improve prodeoxyviolacein (PDV) production in haploid yeast containing chromosome synV. To rapidly and continuously generate genome diversification with the desired phenotype, the multiplex SCRaMbLE iterative cycle strategy has been developed for the screening of high PDV production strains. Whole-genome sequencing analysis reveals large duplications, deletions, and even the whole genome duplications. The deletion of YER151C is proved to be responsible for the increase. This study demonstrates that artificial DNA rearrangement can be used to accelerate microbial evolution and the production of biobased chemicals.

Graphical abstract

Keywords

synthetic biology / genome rearrangement / prodeoxyviolacein / SCRaMbLE / Saccharomyces cerevisiae

Cite this article

Download citation ▾
Juan Wang, Bin Jia, Zexiong Xie, Yunxiang Li, Yingjin Yuan. Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles. Front. Chem. Sci. Eng., 2018, 12(4): 806‒814 https://doi.org/10.1007/s11705-018-1739-2

References

[1]
Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J B, Lindstrom D L, Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476
CrossRef Google scholar
[2]
Yue J X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P, Warringer J, Lagomarsino M C, Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49(6): 913–924
CrossRef Google scholar
[3]
Zhang Q J, Zhu T, Xia E H, Shi C, Liu Y L, Zhang Y, Liu Y, Jiang W K, Zhao Y J, Mao S Y, Rapid diversification of five Oryza AA genomes associated with rice adaptation. Nucleic Acids Research, 2014, 111(46): e4954–e4962
[4]
Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Research, 2003, 13(1): 37–45
CrossRef Google scholar
[5]
Redon R, Ishikawa S, Fitch K R, Feuk L, George H, Andrews T D, Fiegler H, Shapero M H, Carson A R, Chen W W, Global variation in copy number in the human genome. Nature, 2006, 444(7118): 444–454
CrossRef Google scholar
[6]
Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, Del Cardayré S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646
CrossRef Google scholar
[7]
Biot-Pelletier D, Martin V J J. Evolutionary engineering by genome shuffling. Applied Microbiology and Biotechnology, 2014, 98(9): 3877–3887
CrossRef Google scholar
[8]
Xie Z X, Li B Z, Mitchell L A, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng B X, Liu H M, “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): 1046
[9]
Wu Y, Li B Z, Zhao M, Mitchell L A, Xie Z X, Lin Q H, Wang X, Xiao W H, Wang Y, Zhou X, Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): 1048
[10]
Durán N, Justo G Z, Durán M, Brocchi M, Cordi L, Tasic L, Castro G R, Nakazato G. Advances in chromobacterium violaceum and properties of violacein–its main secondary metabolite: A review. Biotechnology Advances, 2016, 34(5): 1030–1045
CrossRef Google scholar
[11]
Melo P S, Maria S S, Vidal B C, Haun M, Durán N. Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cellular & Developmental Biology, 2000, 36(8): 539–543
CrossRef Google scholar
[12]
Konzen M, De Marco D, Cordova C A S, Vieira T O, Antônio R V, Creczynski-Pasa T B. Antioxidant properties of violacein: Possible relation on its biological function. Bioorganic & Medicinal Chemistry, 2006, 14(24): 8307–8313
CrossRef Google scholar
[13]
Durán N, Antonio R V, Haun M, Pilli R A. Biosynthesis of a trypanocide by Chromobacterium violaceum. World Journal of Microbiology & Biotechnology, 1994, 10(6): 686–690
CrossRef Google scholar
[14]
Antonisamy P, Ignacimuthu S. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine, 2010, 17(3–4): 300–304
CrossRef Google scholar
[15]
Lee M E, Aswani A, Han A S, Tomlin C J, Dueber J E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668–10678
CrossRef Google scholar
[16]
Lin Q, Jia B, Mitchell L A, Luo J C, Yang K, Zeller K I, Zhang W Q, Xu Z W, Stracquadanio G, Bader J S, Boeke J D, Yuan Y J. RADOM, an Efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synthetic Biology, 2014, 4(3): 213–220
CrossRef Google scholar
[17]
Liu D, Liu H, Li B Z, Qi H, Jia B, Zhou X, Du H X, Zhang W, Yuan Y J. Multigene pathway engineering with regulatory linkers (M-PERL). ACS Synthetic Biology, 2016, 5(12): 1535–1545
CrossRef Google scholar
[18]
Knaggs A R. The biosynthesis of shikimate metabolites. Natural Product Reports, 2003, 20(1): 119–136
CrossRef Google scholar
[19]
Zalatan J G, Lee M, Almeida E R, Gilbert L A, Whitehead E H, La Russa M, Tsai J C, Weissman J S, Dueber J E, Qi L S, Lim W A. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160(1–2): 339–350
CrossRef Google scholar
[20]
Jia B, Wu Y, Li B Z, Mitchell L A, Liu H, Pan S, Wang J, Zhang H R, Liu H M, Chen Z X, Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 2018, 9(1): 1933
CrossRef Google scholar
[21]
Querol A, Fernández-Espinar M T, Del Olmo M, Barrio E. Adaptive evolution of wine yeast. International Journal of Food Microbiology, 2003, 86(1–2): 3–10
CrossRef Google scholar
[22]
Gatti L, Hoe K L, Hayles J, Righetti S C, Carenini N B, Laura D, Kim D U, Park H O, Perego P. Ubiquitin-proteasome genes as targets for modulation of cisplatin sensitivity in fission yeast. BMC Genomics, 2011, 12(1): 44
CrossRef Google scholar
[23]
Dodgson S E, Santaguida S, Kim S, Sheltzer J, Amon A. The pleiotropic deubiquitinase UBP3 confers aneuploidy tolerance. Genes & Development, 2016, 30(20): 2259–2271
CrossRef Google scholar
[24]
Liu D, Li B Z, Liu H, Guo X J, Yuan Y J. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 117–125
CrossRef Google scholar
[25]
Wang R Z, Gu X L, Yao M D, Pan C H, Liu H, Xiao W H, Wang Y, Yuan Y J. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 89–99
CrossRef Google scholar
[26]
Yuan Y J, Wu J C, Wang X. Collaborations of China with the world in Synbio. Frontiers of Chemical Science and Engineering, 2017, 11(1): 1–2
CrossRef Google scholar

Acknowledgements

We thank the National Program on Key Basic Research Project of China (2014CB745100) and the National Natural Science Foundation of China (21750001 and 21621004) for funding.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705–018-1739-2 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(376 KB)

Accesses

Citations

Detail

Sections
Recommended

/