Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives

Jintang Huang, Youju Huang, Si Wu

PDF(354 KB)
PDF(354 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 450-456. DOI: 10.1007/s11705-018-1735-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives

Author information +
History +

Abstract

Supramolecular assemblies (PS-b-P4VP(AzoR)) are fabricated by hydrogen-bonding azobenzene derivatives (AzoR) to poly(4-vinyl pyridine) blocks of polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP). PS-b-P4VP(AzoR) forms phase separated nanostructures with a period of ~75–105 nm. A second length scale structure with a period of 2 µm is fabricated on phase separated PS-b-P4VP(AzoR) by laser interference ablation. Both the concentration and the substituent of AzoR in PS-b-P4VP(AzoR) affect the laser ablation process. The laser ablation threshold of PS-b-P4VP(AzoR) decreases as the concentration of AzoR increases. In PS-b-P4VP(AzoR) with different substituents (R= CN, H, and CH3), ablation thresholds follow the trend: PS-b-P4VP(AzoCN)<PS-b-P4VP(AzoCH3)<PS-b-P4VP(AzoH). This result indicates that the electron donor group (CH3) and the electron acceptor group (CN) can lower the ablation threshold of PS-b-P4VP(AzoR).

Graphical abstract

Keywords

laser ablation / block copolymers / hydrogen-bond / azobenzene derivatives / supramolecular assembly

Cite this article

Download citation ▾
Jintang Huang, Youju Huang, Si Wu. Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives. Front. Chem. Sci. Eng., 2018, 12(3): 450‒456 https://doi.org/10.1007/s11705-018-1735-6

References

[1]
Lippert T, Dickinson J T. Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions. Chemical Reviews, 2003, 103(2): 453–486
CrossRef Pubmed Google scholar
[2]
Weis P, Wu S. Light-switchable azobenzene-containing macromolecules: From UV to near infrared. Macromolecular Rapid Communications, 2018, 39(1): 1700220
CrossRef Pubmed Google scholar
[3]
Huang J, Wu S, Beckemper S, Gillner A, Zhang Q, Wang K. All-optical fabrication of ellipsoidal caps on azobenzene functional polymers. Optics Letters, 2010, 35(16): 2711–2713
CrossRef Pubmed Google scholar
[4]
Zhai T, Zhang X, Pang Z, Dou F. Direct writing of polymer lasers using interference ablation. Advanced Materials, 2011, 23(16): 1860–1864
CrossRef Pubmed Google scholar
[5]
Huang J T, Beckemper S, Gillner A, Wang K Y. Tunable surface texturing by polarization-controlled three-beam interference. Journal of Micromechanics and Microengineering, 2010, 20(9): 095004
CrossRef Google scholar
[6]
Wohl C J, Belcher M A, Chen L, Connell J W. Laser ablative patterning of copoly(imide siloxane)s generating superhydrophobic surfaces. Langmuir, 2010, 26(13): 11469–11478
CrossRef Pubmed Google scholar
[7]
Patel R S, Wassick T A. Laser processes for multichip module’s high density multilevel thin film packaging. Laser Applications in Microelectronic and Optoelectronic Manufacturing II, 1997, 2991: 217–223
CrossRef Google scholar
[8]
Aoki H. Laser processing method to form an ink jet nozzle plate. US Patent, 1998
[9]
Weis P, Tian W, Wu S. Photoinduced liquefaction of azobenzene-containing polymers. Chemistry, 2018, 24(25): 6494–6505
CrossRef Pubmed Google scholar
[10]
Wu S, Huang J T, Beckemper S, Gillner A, Wang K Y, Bubeck C. Block copolymer supramolecular assemblies hierarchically structured by three-beam interference laser ablation. Journal of Materials Chemistry, 2012, 22(11): 4989–4995
CrossRef Google scholar
[11]
Huang J, Beckemper S, Wu S, Shen J, Zhang Q, Wang K, Gillner A. Light driving force for surface patterning on azobenzene-containing polymers. Physical Chemistry Chemical Physics, 2011, 13(36): 16150–16158
CrossRef Pubmed Google scholar
[12]
Bates F S, Fredrickson G H. Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry, 1990, 41(1): 525–557
CrossRef Pubmed Google scholar
[13]
Bang J, Jeong U, Ryu Y, Russell T P, Hawker C J. Block copolymer nanolithography: Translation of molecular level control to nanoscale patterns. Advanced Materials, 2009, 21(47): 4769–4792
CrossRef Pubmed Google scholar
[14]
Cheng J Y, Ross C A, Smith H I, Thomas E L. Templated self-assembly of block copolymers: Top-down helps bottom-up. Advanced Materials, 2006, 18(19): 2505–2521
CrossRef Google scholar
[15]
Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, Auernhammer G K, Berger R, Butt H J, Wu S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nature Chemistry, 2017, 9(2): 145–151
CrossRef Pubmed Google scholar
[16]
Guo C H, Lee Y, Lin Y H, Strzalka J, Wang C, Hexemer A, Jaye C, Fischer D A, Verduzco R, Wang Q, Gomez E D. Photovoltaic performance of block copolymer devices is independent of the crystalline texture in the active layer. Macromolecules, 2016, 49(12): 4599–4608
CrossRef Google scholar
[17]
Hung C C, Chiu Y C, Wu H C, Lu C, Bouilhac C, Otsuka I, Halila S, Borsali R, Tung S H, Chen W C. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers. Advanced Functional Materials, 2017, 27(13): 1606161
CrossRef Google scholar
[18]
Mitchell V D, Gann E, Huettner S, Singh C R, Subbiah J, Thomsen L, McNeill C R, Thelakkat M, Jones D J. Morphological and device evaluation of an amphiphilic block copolymer for organic photovoltaic applications. Macromolecules, 2017, 50(13): 4942–4951
CrossRef Google scholar
[19]
Yoo H G, Byun M, Jeong C K, Lee K J. Performance enhancement of electronic and energy devices via block copolymer self-assembly. Advanced Materials, 2015, 27(27): 3982–3998
CrossRef Pubmed Google scholar
[20]
Wang J, Wu B, Li S, Sinawang G, Wang X, He Y. Synthesis and characterization of photoprocessable lignin-based azo bolymer. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 4036–4042
CrossRef Google scholar
[21]
Wu S, Duan S Y, Lei Z Y, Su W, Zhang Z S, Wang K Y, Zhang Q J. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording. Journal of Materials Chemistry, 2010, 20(25): 5202–5209
CrossRef Google scholar
[22]
Ikkala O, ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. Science, 2002, 295(5564): 2407–2409
CrossRef Pubmed Google scholar
[23]
Kuila B K, Stamm M. Block copolymer-small molecule supramolecular assembly in thin film: A novel tool for surface patterning of different functional nanomaterials. Journal of Materials Chemistry, 2011, 21(37): 14127–14134
CrossRef Google scholar
[24]
Zhao Y, Thorkelsson K, Mastroianni A J, Schilling T, Luther J M, Rancatore B J, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Fréchet J M, Alivisatos A P, Xu T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nature Materials, 2009, 8(12): 979–985
CrossRef Pubmed Google scholar
[25]
Roland S, Gaspard D, Prud’homme R E, Bazuin C G. Morphology evolution in slowly dip-coated supramolecular PS-b-P4VP thin films. Macromolecules, 2012, 45(13): 5463–5476
CrossRef Google scholar
[26]
Soininen A J, Tanionou I, ten Brummelhuis N, Schlaad H, Hadjichristidis N, Ikkala O, Raula J, Mezzenga R, Ruokolainen J. Hierarchical structures in lamellar hydrogen bonded LC side chain diblock copolymers. Macromolecules, 2012, 45(17): 7091–7097
CrossRef Google scholar
[27]
Huang W H, Chen P Y, Tung S H. Effects of annealing solvents on the morphology of block copolymer-based supramolecular thin films. Macromolecules, 2012, 45(3): 1562–1569
CrossRef Google scholar
[28]
de Wit J, van Ekenstein G A, Polushkin E, Kvashnina K, Bras W, Ikkala O, ten Brinke G. Self-assembled poly(4-vinylpyridine)—surfactant systems using alkyl and alkoxy phenylazophenols. Macromolecules, 2008, 41(12): 4200–4204
CrossRef Google scholar
[29]
Priimagi A, Vapaavuori J, Rodriguez F J, Faul C F J, Heino M T, Ikkala O, Kauranen M, Kaivola M. Hydrogen-bonded polymer-azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions. Chemistry of Materials, 2008, 20(20): 6358–6363
CrossRef Google scholar
[30]
Liu Z Y, Lu G Y, Ma J. Tuning the absorption spectra and nonlinear optical properties of D-pi-A azobenzene derivatives by changing the dipole moment and conjugation length: A theoretical study. Journal of Physical Organic Chemistry, 2011, 24(7): 568–577
CrossRef Google scholar
[31]
Ki H, Mohanty P S, Mazumder J. Modelling of high-density laser-material interaction using fast level set method. Journal of Physics. D, Applied Physics, 2001, 34(3): 364–372
CrossRef Google scholar
[32]
Martukanitz R P. A critical review of laser beam welding. In: Schriempf J T, ed. Critical Review: Industrial Lasers and Applications. Bellingham: Spie-Int Soc Optical Engineering, 2005, 11–24
[33]
Hattori M. Thermal diffusivety of some linear polymers. Kolloid-Zeitschrift and Zeitschrift Fur Polymere, 1965, 202(1): 11–14
CrossRef Google scholar
[34]
Morikawa J, Kobayahi A, Hashimoto T. Thermal diffusivity in a binary mixture of poly(phenylene oxide) and polystyrene. Thermochimica Acta, 1995, 267: 289–296
CrossRef Google scholar
[35]
Yesodha S K, Sadashiva Pillai C K, Tsutsumi N. Stable polymeric materials for nonlinear optics: A review based on azobenzene systems. Progress in Polymer Science, 2004, 29(1): 45–74
CrossRef Google scholar
[36]
Liu R, Li Y H, Chang J, Xiao Q, Zhu H J, Sun W F. Photophysics and nonlinear absorption of 4,4′-diethynylazobenzene derivatives terminally capped with substituted aromatic rings. Journal of Photochemistry and Photobiology A Chemistry, 2012, 239: 47–54
CrossRef Google scholar
[37]
Tian L, Hu Z J, Shi P F, Zhou H P, Wu H Y, Tian Y P, Zhou Y F, Tao X T, Jiang M H. Synthesis and two-photon optical characterization of D-pi-D type schiff bases. Journal of Luminescence, 2007, 127(2): 423–430
CrossRef Google scholar
[38]
Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, Mikroyannidis J. Strong two photon absorption and photophysical properties of symmetrical chromophores with electron accepting edge substituents. Journal of Physical Chemistry A, 2008, 112(21): 4742–4748
CrossRef Pubmed Google scholar

Acknowledgement

This study was supported by the joint program of the Max Planck Society and the Chinese Academy of Sciences. We thank Prof. C. Bubeck for helpful discussions. Open access funding provided by Max Planck Society.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-018-1735-6 and is accessible for authorized users.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the appropriate credit is given to the original author(s) and the source, and a link is provided to the Creative Commons license, indicating if changes were made.

RIGHTS & PERMISSIONS

2018 The Author(s) 2018. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(354 KB)

Accesses

Citations

Detail

Sections
Recommended

/