Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives
Jintang Huang, Youju Huang, Si Wu
Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives
Supramolecular assemblies (PS-b-P4VP(AzoR)) are fabricated by hydrogen-bonding azobenzene derivatives (AzoR) to poly(4-vinyl pyridine) blocks of polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP). PS-b-P4VP(AzoR) forms phase separated nanostructures with a period of ~75–105 nm. A second length scale structure with a period of 2 µm is fabricated on phase separated PS-b-P4VP(AzoR) by laser interference ablation. Both the concentration and the substituent of AzoR in PS-b-P4VP(AzoR) affect the laser ablation process. The laser ablation threshold of PS-b-P4VP(AzoR) decreases as the concentration of AzoR increases. In PS-b-P4VP(AzoR) with different substituents (R= CN, H, and CH3), ablation thresholds follow the trend: PS-b-P4VP(AzoCN)<PS-b-P4VP(AzoCH3)<PS-b-P4VP(AzoH). This result indicates that the electron donor group (CH3) and the electron acceptor group (CN) can lower the ablation threshold of PS-b-P4VP(AzoR).
laser ablation / block copolymers / hydrogen-bond / azobenzene derivatives / supramolecular assembly
[1] |
Lippert T, Dickinson J T. Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions. Chemical Reviews, 2003, 103(2): 453–486
CrossRef
Pubmed
Google scholar
|
[2] |
Weis P, Wu S. Light-switchable azobenzene-containing macromolecules: From UV to near infrared. Macromolecular Rapid Communications, 2018, 39(1): 1700220
CrossRef
Pubmed
Google scholar
|
[3] |
Huang J, Wu S, Beckemper S, Gillner A, Zhang Q, Wang K. All-optical fabrication of ellipsoidal caps on azobenzene functional polymers. Optics Letters, 2010, 35(16): 2711–2713
CrossRef
Pubmed
Google scholar
|
[4] |
Zhai T, Zhang X, Pang Z, Dou F. Direct writing of polymer lasers using interference ablation. Advanced Materials, 2011, 23(16): 1860–1864
CrossRef
Pubmed
Google scholar
|
[5] |
Huang J T, Beckemper S, Gillner A, Wang K Y. Tunable surface texturing by polarization-controlled three-beam interference. Journal of Micromechanics and Microengineering, 2010, 20(9): 095004
CrossRef
Google scholar
|
[6] |
Wohl C J, Belcher M A, Chen L, Connell J W. Laser ablative patterning of copoly(imide siloxane)s generating superhydrophobic surfaces. Langmuir, 2010, 26(13): 11469–11478
CrossRef
Pubmed
Google scholar
|
[7] |
Patel R S, Wassick T A. Laser processes for multichip module’s high density multilevel thin film packaging. Laser Applications in Microelectronic and Optoelectronic Manufacturing II, 1997, 2991: 217–223
CrossRef
Google scholar
|
[8] |
Aoki H. Laser processing method to form an ink jet nozzle plate. US Patent, 1998
|
[9] |
Weis P, Tian W, Wu S. Photoinduced liquefaction of azobenzene-containing polymers. Chemistry, 2018, 24(25): 6494–6505
CrossRef
Pubmed
Google scholar
|
[10] |
Wu S, Huang J T, Beckemper S, Gillner A, Wang K Y, Bubeck C. Block copolymer supramolecular assemblies hierarchically structured by three-beam interference laser ablation. Journal of Materials Chemistry, 2012, 22(11): 4989–4995
CrossRef
Google scholar
|
[11] |
Huang J, Beckemper S, Wu S, Shen J, Zhang Q, Wang K, Gillner A. Light driving force for surface patterning on azobenzene-containing polymers. Physical Chemistry Chemical Physics, 2011, 13(36): 16150–16158
CrossRef
Pubmed
Google scholar
|
[12] |
Bates F S, Fredrickson G H. Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry, 1990, 41(1): 525–557
CrossRef
Pubmed
Google scholar
|
[13] |
Bang J, Jeong U, Ryu Y, Russell T P, Hawker C J. Block copolymer nanolithography: Translation of molecular level control to nanoscale patterns. Advanced Materials, 2009, 21(47): 4769–4792
CrossRef
Pubmed
Google scholar
|
[14] |
Cheng J Y, Ross C A, Smith H I, Thomas E L. Templated self-assembly of block copolymers: Top-down helps bottom-up. Advanced Materials, 2006, 18(19): 2505–2521
CrossRef
Google scholar
|
[15] |
Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, Auernhammer G K, Berger R, Butt H J, Wu S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nature Chemistry, 2017, 9(2): 145–151
CrossRef
Pubmed
Google scholar
|
[16] |
Guo C H, Lee Y, Lin Y H, Strzalka J, Wang C, Hexemer A, Jaye C, Fischer D A, Verduzco R, Wang Q, Gomez E D. Photovoltaic performance of block copolymer devices is independent of the crystalline texture in the active layer. Macromolecules, 2016, 49(12): 4599–4608
CrossRef
Google scholar
|
[17] |
Hung C C, Chiu Y C, Wu H C, Lu C, Bouilhac C, Otsuka I, Halila S, Borsali R, Tung S H, Chen W C. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers. Advanced Functional Materials, 2017, 27(13): 1606161
CrossRef
Google scholar
|
[18] |
Mitchell V D, Gann E, Huettner S, Singh C R, Subbiah J, Thomsen L, McNeill C R, Thelakkat M, Jones D J. Morphological and device evaluation of an amphiphilic block copolymer for organic photovoltaic applications. Macromolecules, 2017, 50(13): 4942–4951
CrossRef
Google scholar
|
[19] |
Yoo H G, Byun M, Jeong C K, Lee K J. Performance enhancement of electronic and energy devices via block copolymer self-assembly. Advanced Materials, 2015, 27(27): 3982–3998
CrossRef
Pubmed
Google scholar
|
[20] |
Wang J, Wu B, Li S, Sinawang G, Wang X, He Y. Synthesis and characterization of photoprocessable lignin-based azo bolymer. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 4036–4042
CrossRef
Google scholar
|
[21] |
Wu S, Duan S Y, Lei Z Y, Su W, Zhang Z S, Wang K Y, Zhang Q J. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording. Journal of Materials Chemistry, 2010, 20(25): 5202–5209
CrossRef
Google scholar
|
[22] |
Ikkala O, ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. Science, 2002, 295(5564): 2407–2409
CrossRef
Pubmed
Google scholar
|
[23] |
Kuila B K, Stamm M. Block copolymer-small molecule supramolecular assembly in thin film: A novel tool for surface patterning of different functional nanomaterials. Journal of Materials Chemistry, 2011, 21(37): 14127–14134
CrossRef
Google scholar
|
[24] |
Zhao Y, Thorkelsson K, Mastroianni A J, Schilling T, Luther J M, Rancatore B J, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Fréchet J M, Alivisatos A P, Xu T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nature Materials, 2009, 8(12): 979–985
CrossRef
Pubmed
Google scholar
|
[25] |
Roland S, Gaspard D, Prud’homme R E, Bazuin C G. Morphology evolution in slowly dip-coated supramolecular PS-b-P4VP thin films. Macromolecules, 2012, 45(13): 5463–5476
CrossRef
Google scholar
|
[26] |
Soininen A J, Tanionou I, ten Brummelhuis N, Schlaad H, Hadjichristidis N, Ikkala O, Raula J, Mezzenga R, Ruokolainen J. Hierarchical structures in lamellar hydrogen bonded LC side chain diblock copolymers. Macromolecules, 2012, 45(17): 7091–7097
CrossRef
Google scholar
|
[27] |
Huang W H, Chen P Y, Tung S H. Effects of annealing solvents on the morphology of block copolymer-based supramolecular thin films. Macromolecules, 2012, 45(3): 1562–1569
CrossRef
Google scholar
|
[28] |
de Wit J, van Ekenstein G A, Polushkin E, Kvashnina K, Bras W, Ikkala O, ten Brinke G. Self-assembled poly(4-vinylpyridine)—surfactant systems using alkyl and alkoxy phenylazophenols. Macromolecules, 2008, 41(12): 4200–4204
CrossRef
Google scholar
|
[29] |
Priimagi A, Vapaavuori J, Rodriguez F J, Faul C F J, Heino M T, Ikkala O, Kauranen M, Kaivola M. Hydrogen-bonded polymer-azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions. Chemistry of Materials, 2008, 20(20): 6358–6363
CrossRef
Google scholar
|
[30] |
Liu Z Y, Lu G Y, Ma J. Tuning the absorption spectra and nonlinear optical properties of D-pi-A azobenzene derivatives by changing the dipole moment and conjugation length: A theoretical study. Journal of Physical Organic Chemistry, 2011, 24(7): 568–577
CrossRef
Google scholar
|
[31] |
Ki H, Mohanty P S, Mazumder J. Modelling of high-density laser-material interaction using fast level set method. Journal of Physics. D, Applied Physics, 2001, 34(3): 364–372
CrossRef
Google scholar
|
[32] |
Martukanitz R P. A critical review of laser beam welding. In: Schriempf J T, ed. Critical Review: Industrial Lasers and Applications. Bellingham: Spie-Int Soc Optical Engineering, 2005, 11–24
|
[33] |
Hattori M. Thermal diffusivety of some linear polymers. Kolloid-Zeitschrift and Zeitschrift Fur Polymere, 1965, 202(1): 11–14
CrossRef
Google scholar
|
[34] |
Morikawa J, Kobayahi A, Hashimoto T. Thermal diffusivity in a binary mixture of poly(phenylene oxide) and polystyrene. Thermochimica Acta, 1995, 267: 289–296
CrossRef
Google scholar
|
[35] |
Yesodha S K, Sadashiva Pillai C K, Tsutsumi N. Stable polymeric materials for nonlinear optics: A review based on azobenzene systems. Progress in Polymer Science, 2004, 29(1): 45–74
CrossRef
Google scholar
|
[36] |
Liu R, Li Y H, Chang J, Xiao Q, Zhu H J, Sun W F. Photophysics and nonlinear absorption of 4,4′-diethynylazobenzene derivatives terminally capped with substituted aromatic rings. Journal of Photochemistry and Photobiology A Chemistry, 2012, 239: 47–54
CrossRef
Google scholar
|
[37] |
Tian L, Hu Z J, Shi P F, Zhou H P, Wu H Y, Tian Y P, Zhou Y F, Tao X T, Jiang M H. Synthesis and two-photon optical characterization of D-pi-D type schiff bases. Journal of Luminescence, 2007, 127(2): 423–430
CrossRef
Google scholar
|
[38] |
Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, Mikroyannidis J. Strong two photon absorption and photophysical properties of symmetrical chromophores with electron accepting edge substituents. Journal of Physical Chemistry A, 2008, 112(21): 4742–4748
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |