S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion
Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang
S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion
Porous polymers have been recently recognized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom-containing monomers and versatile polymerization methods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmospheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m2·g−1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g−1 at 5 mV·s−1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s−1. Furthermore, as the electrochemical catalysts for oxygen reduction reaction, as-fabricated porous carbons presented ultralow half-wave-potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure-performance interrelationship study of heteroatoms co-doped porous carbon for energy applications.
porous polymers / porous carbons / sulfur and nitrogen doping / supercapacitor
[1] |
Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347(6217): 1246501
CrossRef
Pubmed
Google scholar
|
[2] |
Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nature Communications, 2015, 6(1): 7221
CrossRef
Pubmed
Google scholar
|
[3] |
Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828
CrossRef
Pubmed
Google scholar
|
[4] |
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377
CrossRef
Pubmed
Google scholar
|
[5] |
Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional soft nanomaterials: A fascinating world of materials. Advanced Materials, 2015, 27(3): 403–427
CrossRef
Pubmed
Google scholar
|
[6] |
Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
CrossRef
Google scholar
|
[7] |
Wu Z S, Parvez K, Feng X, MµLlen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487
CrossRef
Pubmed
Google scholar
|
[8] |
Merlet C, Rotenberg B, Madden P A, Taberna P L, Simon P, Gogotsi Y, Salanne M. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012, 11(4): 306–310
CrossRef
Pubmed
Google scholar
|
[9] |
Zhuang X, Zhang F, Wu D, Feng X. Graphene coupled Schiff-base porous polymers: Towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity. Advanced Materials, 2014, 26(19): 3081–3086
CrossRef
Pubmed
Google scholar
|
[10] |
Zhuang X, Zhang F, Wu D, Forler N, Liang H, Wagner M, Gehrig D, Hansen M R, Laquai F, Feng X. Two-dimensional sandwich-type, graphene-based conjugated microporous polymers. Angewandte Chemie International Edition, 2013, 52(37): 9668–9672
CrossRef
Pubmed
Google scholar
|
[11] |
Huang X, Yang L, Hao S, Zheng B, Yan L, Qu F, Asiri A M, Sun X. Sun X. N-Doped carbon dots: A metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 2017, 4(3): 537–540
CrossRef
Google scholar
|
[12] |
Liu Q, Pu Z, Tang C, Asiri A M, Qusti A H, Al-Youbi A O, Sun X. N-Doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2013, 36: 57–61
CrossRef
Google scholar
|
[13] |
Ning R, Ge C, Liu Q, Tian J, Asiri A M, Alamry K A, Li C, Sun X. Hierarchically porous N-doped carbon nanoflakes: Large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon, 2014, 78: 60–69
CrossRef
Google scholar
|
[14] |
Tian J, Ning R, Liu Q, Asiri A M, Al-Youbi A O, Sun X. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: Solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2014, 6(2): 1011–1017
CrossRef
Pubmed
Google scholar
|
[15] |
Hu B, Wang K, Wu L, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828
CrossRef
Pubmed
Google scholar
|
[16] |
Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy & Environmental Science, 2014, 7(11): 3574–3592
CrossRef
Google scholar
|
[17] |
Wang L, Yu P, Zhao L, Tian C, Zhao D, Zhou W, Yin J, Wang R, Fu H. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Scientific Reports, 2014, 4(1): 5184
CrossRef
Pubmed
Google scholar
|
[18] |
Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 2009, 8(6): 500–506
CrossRef
Pubmed
Google scholar
|
[19] |
Zhang Y, Riduan S N. Functional porous organic polymers for heterogeneous catalysis. Chemical Society Reviews, 2012, 41(6): 2083–2094
CrossRef
Pubmed
Google scholar
|
[20] |
Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications. Chemical Society Reviews, 2013, 42(2): 548–568
CrossRef
Pubmed
Google scholar
|
[21] |
Su Y, Yao Z, Zhang F, Wang H, Mics Z, Cánovas E, Bonn M, Zhuang X, Feng X. Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc-air battery. Advanced Functional Materials, 2016, 26(32): 5893–5902
CrossRef
Google scholar
|
[22] |
Zhuang X, Gehrig D, Forler N, Liang H, Wagner M, Hansen M R, Laquai F, Zhang F, Feng X. Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Advanced Materials, 2015, 27(25): 3789–3796
CrossRef
Pubmed
Google scholar
|
[23] |
Zhao W, Han S, Zhuang X, Zhang F, Mai Y, Feng X. Cross-linked polymer-derived B/N co-doped carbon materials with selective capture of CO2. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(46): 23352–23359
CrossRef
Google scholar
|
[24] |
Han S, Feng Y, Zhang F, Yang C, Yao Z, Zhao W, Qiu F, Yang L, Yao Y, Zhuang X, Feng X. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting. Advanced Functional Materials, 2015, 25(25): 3899–3906
CrossRef
Google scholar
|
[25] |
He Y, Gehrig D, Zhang F, Lu C, Zhang C, Cai M, Wang Y, Laquai F, Zhuang X, Feng X. Highly efficient electrocatalysts for oxygen reduction reaction based on 1D ternary doped porous carbons derived from carbon nanotube directed conjugated microporous polymers. Advanced Functional Materials, 2016, 26(45): 8255–8265
CrossRef
Google scholar
|
[26] |
Yu J S, Kang S, Yoon S B, Chai G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. Journal of the American Chemical Society, 2002, 124(32): 9382–9383
CrossRef
Pubmed
Google scholar
|
[27] |
Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332(6037): 1537–1541
CrossRef
Pubmed
Google scholar
|
[28] |
Fechler N, Fellinger T P, Antonietti M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Advanced Materials, 2013, 25(1): 75–79
CrossRef
Pubmed
Google scholar
|
[29] |
Deng X, Zhao B, Zhu L, Shao Z. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93: 48–58
CrossRef
Google scholar
|
[30] |
Liang H W, Zhuang X, BrµLler S, Feng X, MµLlen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications, 2014, 5(1): 4973
CrossRef
Pubmed
Google scholar
|
[31] |
Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Advanced Materials, 2016, 28(10): 1981–1987
CrossRef
Pubmed
Google scholar
|
[32] |
Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726
CrossRef
Google scholar
|
[33] |
Xia K, Gao Q, Wu C, Song S, Ruan M. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 2007, 45(10): 1989–1996
CrossRef
Google scholar
|
[34] |
Debnath S, Bedi A, Zade S S. Thienopentathiepine: A sulfur containing fused heterocycle for conjugated systems and their electrochemical polymerization. Polymer Chemistry, 2015, 6(44): 7658–7665
CrossRef
Google scholar
|
[35] |
Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Advanced Materials, 2017, 29(38): 1702428
CrossRef
Pubmed
Google scholar
|
[36] |
Sandel V, Freedman H. Tetraphenylcyclobutadiene derivatives. VI. An investigation of the intermediacy of tetraphenylcyclobutadiene. Journal of the American Chemical Society, 1968, 90(8): 2059–2069
CrossRef
Google scholar
|
[37] |
Li T T T, Brubaker C H Jr. Catalytic oligomerization in the reaction of diphenylacetylene with chromium vapor. Inorganica Chimica Acta, 1982, 65: L113–L114
CrossRef
Google scholar
|
[38] |
Schipper D J, Moh L C H, MµLler P, Swager T M. Dithiolodithiole as a building block for conjugated materials. Angewandte Chemie International Edition, 2014, 53(23): 5847–5851
CrossRef
Pubmed
Google scholar
|
[39] |
Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, MµLlen K, Feng X. Persulfurated coronene: A new generation of “sulflower”. Journal of the American Chemical Society, 2017, 139(6): 2168–2171
CrossRef
Pubmed
Google scholar
|
[40] |
Silverstein M, Visoly-Fisher I. Plasma polymerized thiophene: Molecular structure and electrical properties. Polymer, 2002, 43(1): 11–20
CrossRef
Google scholar
|
[41] |
Vasquez M, Cruz G, Olayo M, Timoshina T, Morales J, Olayo R. Chlorine dopants in plasma synthesized heteroaromatic polymers. Polymer, 2006, 47(23): 7864–7870
CrossRef
Google scholar
|
[42] |
Kamat S V, Yadav J, Puri V, Puri R. Modification of the properties of polythiophene thin films by vapor chopping. Applied Surface Science, 2012, 258(19): 7567–7573
CrossRef
Google scholar
|
[43] |
Tabačiarová J, Mičušík M, Fedorko P, Omastová M. Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polymer Degradation & Stability, 2015, 120: 392–401
CrossRef
Google scholar
|
[44] |
Miron C, Hulubei C, Sava I, Quade A, Steuer A, Weltmann K D, Kolb J. Polyimide film surface modification by nanosecond high voltage pulse driven electrical discharges in water. Plasma Processes and Polymers, 2015, 12(8): 734–735
CrossRef
Google scholar
|
[45] |
Sun D, Yang J, Yan X. Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries. Chemical Communications, 2015, 51(11): 2134–2137
CrossRef
Pubmed
Google scholar
|
[46] |
Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy & Environmental Science, 2015, 8(10): 2916–2921
CrossRef
Google scholar
|
[47] |
Yang S, Zhi L, Tang K, Feng X, Maier J, MµLlen K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Advanced Functional Materials, 2012, 22(17): 3634–3640
CrossRef
Google scholar
|
[48] |
Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard M H, Saraf L V, Nie Z, Exarhos G J, Liu J. A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Advanced Materials, 2012, 24(9): 1176–1181
CrossRef
Pubmed
Google scholar
|
[49] |
Kim J S, Hwang T H, Kim B G, Min J, Choi J W. A lithium-sulfur battery with a high areal energy density. Advanced Functional Materials, 2014, 24(34): 5359–5367
CrossRef
Google scholar
|
[50] |
Cao C, Zhuang X, Su Y, Zhang Y, Zhang F, Wu D, Feng X, 0. Zhuang X, Su Y, Zhang Y, Zhang F, Wu D, Feng X. 2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction. Polymer Chemistry, 2014, 5(6): 2057–2064
CrossRef
Google scholar
|
[51] |
Liu J, Yang T, Wang D, Lu G Q, Zhao D, Qiao S Z. Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4(1): 2798
CrossRef
Google scholar
|
[52] |
Lee M S, Park M, Kim H Y, Park S J. Effects of microporosity and surface chemistry on separation performances of N-containing pitch-based activated carbons for CO2/N2 binary mixture. Scientific Reports, 2016, 6(1): 23224
CrossRef
Pubmed
Google scholar
|
[53] |
Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 2013, 6(10): 2839–2855
CrossRef
Google scholar
|
[54] |
Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Ren Y, Zhao D, Xie S. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy & Environmental Science, 2011, 4(4): 1440–1446
CrossRef
Google scholar
|
[55] |
Niu Z, Zhou W, Chen X, Chen J, Xie S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Advanced Materials, 2015, 27(39): 6002–6008
CrossRef
Pubmed
Google scholar
|
[56] |
Ran F, Zhang X, Liu Y, Shen K, Niu X, Tan Y, Kong L, Kang L, Xu C, Chen S. Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Advances, 2015, 5(106): 87077–87083
CrossRef
Google scholar
|
[57] |
Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, MµLlen K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Advanced Materials, 2012, 24(37): 5130–5135
CrossRef
Pubmed
Google scholar
|
[58] |
Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M, Forster M, Chassé T, Pichler T, Riedl T, Chen Y, Scherf U. Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Advanced Materials, 2015, 27(42): 6714–6721
CrossRef
Pubmed
Google scholar
|
[59] |
Chang J, Jin M, Yao F, Kim T H, Le V T, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee Y H. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Advanced Functional Materials, 2013, 23(40): 5074–5083
CrossRef
Google scholar
|
[60] |
Lei Z, Lu L, Zhao X. The electrocapacitive properties of graphene oxide reduced by urea. Energy & Environmental Science, 2012, 5(4): 6391–6399
CrossRef
Google scholar
|
[61] |
Sumboja A, Foo C Y, Wang X, Lee P S. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Advanced Materials, 2013, 25(20): 2809–2815
CrossRef
Pubmed
Google scholar
|
[62] |
Nasini U B, Bairi V G, Ramasahayam S K, Bourdo S E, Viswanathan T, Shaikh A U. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. Journal of Power Sources, 2014, 250: 257–265
CrossRef
Google scholar
|
[63] |
Yuan K, Zhuang X, Fu H, Brunklaus G, Forster M, Chen Y, Feng X, Scherf U. Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction. Angewandte Chemie International Edition, 2016, 55(24): 6858–6863
CrossRef
Pubmed
Google scholar
|
[64] |
Zhu J, Sakaushi K, Clavel G, Shalom M, Antonietti M, Fellinger T P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. Journal of the American Chemical Society, 2015, 137(16): 5480–5485
CrossRef
Pubmed
Google scholar
|
[65] |
Nam G, Park J, Kim S T, Shin D B, Park N, Kim Y, Lee J S, Cho J. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Letters, 2014, 14(4): 1870–1876
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |