
3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
Miaomiao Tong, Lei Wang, Peng Yu, Xu Liu, Honggang Fu
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 417-424.
3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP nanosheets grown on N-doped carbon coated Ni foam (NiCoP/NF@NC) has been synthesized by a hydrothermal route and a subsequent phosphorization process. As a bifunctional electrocatalyst, the NiCoP/NF@NC electrode needs overpotentials of 31.8 mV for hydrogen evolution reaction and 308.2 mV for oxygen evolution reaction to achieve the current density of 10 mA·cm−2 in 1 mol·L−1 KOH electrolyte. This is much better than the corresponding monometal catalysts of CoP/NF@NC and NiP/NF@NC owing to the synergistic effect. NiCoP/NF@NC also exhibits low Tafel slope, and excellent long-term stability, which are comparable to the commercial noble catalysts of Pt/C and RuO2.
bimetallic phosphides / N-doped carbon / self-support / hydrogen evolution / oxygen evolution
[1] |
Dresselhaus M S, Thomas I L. Alternative energy technologies. Nature, 2001, 414(6861): 332–337
CrossRef
Google scholar
|
[2] |
Liu W, Hu E, Jiang H, Xiang Y, Weng Z, Li M, Fan Q, Yu X, Altman E I, Wang H. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7: 10771
CrossRef
Google scholar
|
[3] |
Jiao Y, Zheng Y, Davey K, Qiao S Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 2016, 1(10): 16130
CrossRef
Google scholar
|
[4] |
Nφrskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46
CrossRef
Google scholar
|
[5] |
Alapati S V, Johnson J K, Sholl D S. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Physical Chemistry Chemical Physics, 2007, 9(12): 1438–1452
CrossRef
Google scholar
|
[6] |
Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180
CrossRef
Google scholar
|
[7] |
Zhang B, Zheng X L, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L L, Xu J X, Liu M, Zheng L R, et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science, 2016, 352(6283): 333–337
CrossRef
Google scholar
|
[8] |
Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Advanced Materials, 2016, 28(2): 215–230
CrossRef
Google scholar
|
[9] |
Jin Y, Wang H, Li J, Yue X, Han Y, Shen P K, Cui Y, Jin Y S, Wang H T, Li J J, et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Advanced Materials, 2016, 28(19): 3785–3790
CrossRef
Google scholar
|
[10] |
Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 2015, 137(44): 14023–14026
CrossRef
Google scholar
|
[11] |
Chen Y Y, Zhang Y, Zhang X, Tang T, Luo H, Shuai N, Dai Z H, Wan L J, Hu J S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Advanced Materials, 2017, 29(39): 1703311
CrossRef
Google scholar
|
[12] |
Guo X X, Kong R M, Zhang X P, Du H T, Qu F L. Ni(OH)2 nanoparticles embedded in conductive microrod array: An efficient and durable electrocatalyst for alkaline oxygen evolution reaction. ACS Catalysis, 2017, 7(7): 4381–4385
|
[13] |
Xu X J, Du P Y, Chen Z K, Huang M H. An electrodeposited cobalt-selenide-based film as an efficient bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(28): 10933–10939
CrossRef
Google scholar
|
[14] |
Lee J E, Jang Y J, Xu W Q, Feng Z X, Park H Y, Kim J Y, Kim D H. PtFe nanoparticles supported on electroactive Au–PANI core@shell nanoparticles for high performance bifunctional electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13692–13699
CrossRef
Google scholar
|
[15] |
Feng J X, Wu J Q, Tong Y X, Li G R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. Journal of the American Chemical Society, 2018, 140(2): 610–617
CrossRef
Google scholar
|
[16] |
Feng J X, Xu H, Ye S H, Ouyang G F, Tong Y X, Li G R. Silica-polypyrrole hybrids as high-performance metal-free electrocatalysts for the hydrogen evolution reaction in neutral media. Angewandte Chemie-Internatioanal Edition, 2017, 56(28): 8120–8124
|
[17] |
Feng J X, Xu H, Dong Y T, Lu X F, Tong Y X, Li G R. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angewandte Chemie-Internatioanal Edition, 2017, 56(11): 2960–2964
|
[18] |
Li J S, Wang Y, Liu C H, Li S L, Wang Y G, Dong L Z, Dai Z H, LiY F, Lan Y Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 2016, 7: 11204
|
[19] |
Qin J S, Du D Y, Guan W, Bo X J, Li Y F, Guo L P, Su Z M, Wang Y Y, Lan Y Q, Zhou H C. Ultrastable polymolybdate-based metal organic frameworks as highly active electrocatalysts for hydrogen generation from water. Journal of the American Chemical Society, 2015, 137(22): 7169–7177
CrossRef
Google scholar
|
[20] |
Tang Y J, Gao M R, Liu C H, Li S L, Jiang H L, Lan Y Q, Han M, Yu S H. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angewandte Chemie-Internatioanal Edition, 2015, 54(44): 12928–12932
|
[21] |
Li Z M, Han M, Xu D D, Yang J, Lin Y, Shi N E, Lu Y A, Yang R, Liu B T, Dai Z H, et al. Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolutionshulin. Advanced Functional Materials, 2018, doi: 10.1002/adfm.201706018
|
[22] |
Deng D R, Xue F, Jia Y J, Ye J C, Bai C D, Zheng M S, Dong Q F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano, 2017, 11(6): 6031–6039
CrossRef
Google scholar
|
[23] |
Chen P Z, Xu K, Fang Z W, Tong Y, Wu J C, Lu X L, Peng X, Ding H, Wu C Z, Xie Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2015, 54(49): 14710–14714
CrossRef
Google scholar
|
[24] |
Wan J, Wu J B, Gao X, Li T Q, Hu Z M, Yu H M, Huang L. Structure confined porous Mo2C for efficient hydrogen evolution. Advanced Functional Materials, 2017, 27(45): 1703933
CrossRef
Google scholar
|
[25] |
Zhou X F, Yang X L, Li H, Hedhili M N, Huang K W, Li L J, Zhang W J. Symmetric synergy of hybrid CoS2-WS2 electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(30): 15552–15558
CrossRef
Google scholar
|
[26] |
Yu L, Yang J F, Lou X W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angewandte Chemie International Edition, 2016, 55: 13422–13426
|
[27] |
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275
CrossRef
Google scholar
|
[28] |
Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299
CrossRef
Google scholar
|
[29] |
Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Letters, 2012, 12(7): 3788–3792
CrossRef
Google scholar
|
[30] |
Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W,
CrossRef
Google scholar
|
[31] |
Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Letters, 2013, 13(3): 1341–1347
CrossRef
Google scholar
|
[32] |
Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115
|
[33] |
Park H, Zhang Y, Scheifers J P, Jothi P R, Encinas A, Fokwa B P T. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. Journal of the American Chemical Society, 2017, 139(37): 12915–12918
CrossRef
Google scholar
|
[34] |
Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschllögl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725
CrossRef
Google scholar
|
[35] |
Li Y, Zhang H, Jiang M, Kuang Y, Sun X, Duan X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 2016, 9(8): 2251–2259
CrossRef
Google scholar
|
[36] |
He P, Yu X Y, Lou X W D. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angewandte Chemie International Edition, 2017, 56(14): 3897–3900
CrossRef
Google scholar
|
[37] |
Li J, Yan M, Zhou X, Huang Z Q, Xia Z, Chang C R, Ma Y, Qu Y. Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–679
CrossRef
Google scholar
|
[38] |
Wang Z, Cao X, Liu D, Hao S, Du G, Asiri A M, Sun X. Ternary NiCoP nanosheet array on a Ti mesh: A high-performance electrochemical sensor for glucose detection. Chemical Communications, 2016, 52(100): 14438–14441
CrossRef
Google scholar
|
[39] |
Wang C, Jiang J, Ding T, Chen G, Xu W, Yang Q. Monodisperse ternary NiCoP nanostructures as a bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions with excellent performance. Advanced Materials Interfaces, 2016, 3(4): 1500454–1500458
CrossRef
Google scholar
|
[40] |
Li J, Yan M, Zhou X, Huang Z Q, Xia Z, Chang C R, Ma Y, Qu Y. Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–6796
CrossRef
Google scholar
|
[41] |
Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri A M, Sun X. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(26): 6710–6714
CrossRef
Google scholar
|
[42] |
Yuan C, Li J, Hou L, Zhang X, Shen L, Lou X W D. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Advanced Functional Materials, 2012, 22(21): 4592–4597
CrossRef
Google scholar
|
[43] |
Yuan C Z, Yang L, Hou L R, Shen L F, Zhang X G, Lou X W. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy & Environmental Science, 2012, 5(7): 7883–7887
CrossRef
Google scholar
|
[44] |
Yu L, Zhang G, Yuan C, Lou X W D. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139
CrossRef
Google scholar
|
[45] |
Du C, Yang L, Yang F L, Cheng G Z, Luo W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis, 2017, 7(6): 4131–4137
CrossRef
Google scholar
|
[46] |
Du D H, Li P C, Ouyang J Y. Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst. ACS Applied Materials & Interfaces, 2015, 7(48): 26952–26958
CrossRef
Google scholar
|
[47] |
Zheng J, Chen X L, Zhong X, Li S Q, Liu T Z, Zhuang G L, Li X N, Deng S W, Mei D H, Wang J G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Advanced Functional Materials, 2017, 27(46): 1704169
CrossRef
Google scholar
|
[48] |
Liang X, Zheng B, Chen L, Zhang J, Zhuang Z, Chen B. MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Applied Materials & Interfaces, 2017, 9(27): 23222–23229
CrossRef
Google scholar
|
[49] |
Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschlögl U, Alshareef H N, Ngenschlögl U S, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725
CrossRef
Google scholar
|
[50] |
Wang X, Li W, Xiong D, Petrovykh D Y, Liu L. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Advanced Functional Materials, 2016, 26(23): 4067–4077
CrossRef
Google scholar
|
/
〈 |
|
〉 |