
A simple umbelliferone based fluorescent probe for the detection of nitroreductase
Adam C. Sedgwick, Alex Hayden, Barry Hill, Steven D. Bull, Robert B. P. Elmes, Tony D. James
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 311-314.
A simple umbelliferone based fluorescent probe for the detection of nitroreductase
A simple nitrobenzyl-umbelliferone (NCOU1) was synthesised containing a nitroreductase (NTR) trigger moiety. The presence of NTR, resulted in the fragmentation of the parent molecule and release of the highly emissive fluorophore umbelliferone via an NTR-catalyzed reduction of the nitro group. In the presence of the NTR enzyme, NCOU1 gave rise to a 5-fold increase in fluorescence intensity at 455 nm and was selective for NTR over other reductive enzymes. These results indicate that NCOU1 can be used as a simple assay for the detection of NTR.
[1] |
Brown J M, Wilson W R. Exploiting tumour hypoxia in cancer treatment. Nature Reviews. Cancer, 2004, 4(6): 437–447
CrossRef
Google scholar
|
[2] |
Wilson W R, Hay M P. Targeting hypoxia in cancer therapy. Nature Reviews. Cancer, 2011, 11(6): 393–410
CrossRef
Google scholar
|
[3] |
Denny W A. Prodrug strategies in cancer therapy. European Journal of Medicinal Chemistry, 2001, 36(7-8): 577–595
CrossRef
Google scholar
|
[4] |
Elmes R B P. Bioreductive fluorescent imaging agents: Applications to tumour hypoxia. Chemical Communications, 2016, 52(58): 8935–8956
CrossRef
Google scholar
|
[5] |
Pacheco-Torres J, López-Larrubia P, Ballesteros P, Cerdán S. Imaging tumor hypoxia by magnetic resonance methods. NMR in Biomedicine, 2011, 24(1): 1–16
CrossRef
Google scholar
|
[6] |
Wu J, Kwon B, Liu W, Anslyn E V, Wang P, Kim J S. Chromogenic/fluorogenic ensemble chemosensing systems. Chemical Reviews, 2015, 115(15): 7893–7943
CrossRef
Google scholar
|
[7] |
Yang Z, Cao J, He Y, Yang J H, Kim T, Peng X, Kim J S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chemical Society Reviews, 2014, 43(13): 4563–4601
CrossRef
Google scholar
|
[8] |
Qian X, Xiao Y, Xu Y, Guo X, Qian J, Zhu W. “Alive” dyes as fluorescent sensors: Fluorophore, mechanism, receptor and images in living cells. Chemical Communications, 2010, 46(35): 6418–6436
CrossRef
Google scholar
|
[9] |
Xu K, Wang F, Pan X, Liu R, Ma J, Kong F, Tang B. High selectivity imaging of nitroreductase using a near-infrared fluorescence probe in hypoxic tumor. Chemical Communications, 2013, 49(25): 2554–2556
CrossRef
Google scholar
|
[10] |
Wan Q Q, Gao X H, He X Y, Chen S M, Song Y C, Gong Q Y, Li X H, Ma H M. A cresyl violet-based fluorescent off-on probe for the detection and Imaging of hypoxia and nitroreductase in living organisms. Chemistry, an Asian Journal, 2014, 9(8): 2058–2062
CrossRef
Google scholar
|
[11] |
Yuan J, Xu Y Q, Zhou N N, Wang R, Qian X H, Xu Y F. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging. RSC Advances, 2014, 4(99): 56207–56210
CrossRef
Google scholar
|
[12] |
Wong R H F, Kwong T, Yau K H, Au-Yeung H Y. Real time detection of live microbes using a highly sensitive bioluminescent nitroreductase probe. Chemical Communications, 2015, 51(21): 4440–4442
CrossRef
Google scholar
|
[13] |
Xu J, Sun S, Li Q, Yue Y, Li Y, Shao S. A rapid response “turn-on” fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging. Analyst (London), 2015, 140(2): 574–581
CrossRef
Google scholar
|
[14] |
Zhou J, Shi W, Li L H, Gong Q Y, Wu X F, Li X H, Ma H M. A lysosome-targeting fluorescence off-on probe for Imaging of nitroreductase and hypoxia in live cells. Chemistry, an Asian Journal, 2016, 11(19): 2719–2724
CrossRef
Google scholar
|
[15] |
Jin C, Zhang Q, Lu W. Selective turn-on near-infrared fluorescence probe for hypoxic tumor cell imaging. RSC Advances, 2017, 7(30): 18217–18223
CrossRef
Google scholar
|
[16] |
Huang B, Chen W, Kuang Y Q, Liu W, Liu X J, Tang L J, Jiang J H. A novel off-on fluorescent probe for sensitive imaging of mitochondria-specific nitroreductase activity in living tumor cells. Organic & Biomolecular Chemistry, 2017, 15(20): 4383–4389
CrossRef
Google scholar
|
[17] |
Zhou Y, Bobba K N, Lv X W, Yang D, Velusamy N, Zhang J F, Bhuniya S. A biotinylated piperazine-rhodol derivative: A ‘turn-on’ probe for nitroreductase triggered hypoxia imaging. Analyst (London), 2017, 142(2): 345–350
CrossRef
Google scholar
|
[18] |
Cui L, Zhong Y, Zhu W, Xu Y, Du Q, Wang X, Qian X, Xiao Y. A new prodrug-derived ratiometric fluorescent probe for hypoxia: High selectivity of nitroreductase and imaging in tumor cell. Organic Letters, 2011, 13(5): 928–931
CrossRef
Google scholar
|
[19] |
Cai Q, Yu T, Zhu W, Xu Y, Qian X. A turn-on fluorescent probe for tumor hypoxia imaging in living cells. Chemical Communications, 2015, 51(79): 14739–14741
CrossRef
Google scholar
|
[20] |
Chevalier A, Zhang Y, Khdour O M, Kaye J B, Hecht S M. Mitochondrial nitroreductase activity enables selective imaging and therapeutic targeting. Journal of the American Chemical Society, 2016, 138(37): 12009–12012
CrossRef
Google scholar
|
[21] |
Li Z, He X, Wang Z, Yang R, Shi W, Ma H. In vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off-on probe. Biosensors & Bioelectronics, 2015, 63: 112–116
CrossRef
Google scholar
|
[22] |
Li Z, Li X, Gao X, Zhang Y, Shi W, Ma H. Nitroreductase detection and hypoxic tumor cell Imaging by a designed sensitive and selective fluorescent probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one. Analytical Chemistry, 2013, 85(8): 3926–3932
CrossRef
Google scholar
|
[23] |
Li Z, Gao X, Shi W, Li X, Ma H. 7-((5-Nitrothiophen-2-yl)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase. Chemical Communications, 2013, 49(52): 5859–5861
CrossRef
Google scholar
|
[24] |
You X, Li L, Li X, Ma H, Zhang G, Zhang D. A new tetraphenylethylene-derived fluorescent probe for nitroreductase detection and hypoxic-tumor-cell imaging. Chemistry, an Asian Journal, 2016, 11(20): 2918–2923
CrossRef
Google scholar
|
[25] |
Ao X, Bright S A, Taylor N C, Elmes R B P. 2-Nitroimidazole based fluorescent probes for nitroreductase; monitoring reductive stress in cellulo. Organic & Biomolecular Chemistry, 2017, 15(29): 6104–6108
CrossRef
Google scholar
|
[26] |
Sedgwick A C, Sun X L, Kim G, Yoon J, Bull S D, James T D. Boronate based fluorescence (ESIPT) probe for peroxynitrite. Chemical Communications, 2016, 52(83): 12350–12352
CrossRef
Google scholar
|
[27] |
Sun X, Xu Q, Kim G, Flower S E, Lowe J P, Yoon J, Fossey J S, Qian X, Bull S D, James T D. A water-soluble boronate-based fluorescent probe for the selective detection of peroxynitrite and imaging in living cells. Chemical Science (Cambridge), 2014, 5(9): 3368–3373
CrossRef
Google scholar
|
[28] |
Gu K Z, Xu Y S, Li H, Guo Z Q, Zhu S J, Zhu S Q, Shi P, James T D, Tian H, Zhu W H. Real-time tracking and in vivo visualization of beta-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. Journal of the American Chemical Society, 2016, 138(16): 5334–5340
CrossRef
Google scholar
|
[29] |
Li M, Wu X M, Wang Y, Li Y S, Zhu W H, James T D. A near-infrared colorimetric fluorescent chemodosimeter for the detection of glutathione in living cells. Chemical Communications, 2014, 50(14): 1751–1753
CrossRef
Google scholar
|
[30] |
Sedgwick A C, Chapman R S L, Gardiner J E, Peacock L R, Kim G, Yoon J, Bull S D, James T D. A bodipy based hydroxylamine sensor. Chemical Communications, 2017, 53(75): 10441–10443
CrossRef
Google scholar
|
[31] |
Sedgwick A C, Han H, Gardiner J E, Bull S D, He X P, James T D. Long-wavelength fluorescent boronate probes for the detection and intracellular imaging of peroxynitrite. Chemical Communications, 2017, 53(95): 12822–12825
CrossRef
Google scholar
|
[32] |
Matikonda S S, Fairhall J M, Tyndall J D A, Hook S, Gamble A B. Stability, kinetic, and mechanistic investigation of 1,8-self-immolative cinnamyl ether spacers for controlled release of phenols and generation of resonance and inductively stabilized methides. Organic Letters, 2017, 19(3): 528–531
CrossRef
Google scholar
|
[33] |
Kwon N, Cho M K, Park S J, Kim D, Nam S J, Cui L, Kim H M, Yoon J. An efficient two-photon fluorescent probe for human NAD(P)H: Quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Chemical Communications, 2017, 53(3): 525–528
CrossRef
Google scholar
|
/
〈 |
|
〉 |