A simple umbelliferone based fluorescent probe for the detection of nitroreductase

Adam C. Sedgwick , Alex Hayden , Barry Hill , Steven D. Bull , Robert B. P. Elmes , Tony D. James

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 311 -314.

PDF (168KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 311 -314. DOI: 10.1007/s11705-017-1697-0
COMMUNICATION
COMMUNICATION

A simple umbelliferone based fluorescent probe for the detection of nitroreductase

Author information +
History +
PDF (168KB)

Abstract

A simple nitrobenzyl-umbelliferone (NCOU1) was synthesised containing a nitroreductase (NTR) trigger moiety. The presence of NTR, resulted in the fragmentation of the parent molecule and release of the highly emissive fluorophore umbelliferone via an NTR-catalyzed reduction of the nitro group. In the presence of the NTR enzyme, NCOU1 gave rise to a 5-fold increase in fluorescence intensity at 455 nm and was selective for NTR over other reductive enzymes. These results indicate that NCOU1 can be used as a simple assay for the detection of NTR.

Graphical abstract

Cite this article

Download citation ▾
Adam C. Sedgwick, Alex Hayden, Barry Hill, Steven D. Bull, Robert B. P. Elmes, Tony D. James. A simple umbelliferone based fluorescent probe for the detection of nitroreductase. Front. Chem. Sci. Eng., 2018, 12(2): 311-314 DOI:10.1007/s11705-017-1697-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown J M, Wilson W R. Exploiting tumour hypoxia in cancer treatment. Nature Reviews. Cancer, 2004, 4(6): 437–447

[2]

Wilson W R, Hay M P. Targeting hypoxia in cancer therapy. Nature Reviews. Cancer, 2011, 11(6): 393–410

[3]

Denny W A. Prodrug strategies in cancer therapy. European Journal of Medicinal Chemistry, 2001, 36(7-8): 577–595

[4]

Elmes R B P. Bioreductive fluorescent imaging agents: Applications to tumour hypoxia. Chemical Communications, 2016, 52(58): 8935–8956

[5]

Pacheco-Torres J, López-Larrubia P, Ballesteros P, Cerdán S. Imaging tumor hypoxia by magnetic resonance methods. NMR in Biomedicine, 2011, 24(1): 1–16

[6]

Wu J, Kwon B, Liu W, Anslyn E V, Wang P, Kim J S. Chromogenic/fluorogenic ensemble chemosensing systems. Chemical Reviews, 2015, 115(15): 7893–7943

[7]

Yang Z, Cao J, He Y, Yang J H, Kim T, Peng X, Kim J S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chemical Society Reviews, 2014, 43(13): 4563–4601

[8]

Qian X, Xiao Y, Xu Y, Guo X, Qian J, Zhu W. “Alive” dyes as fluorescent sensors: Fluorophore, mechanism, receptor and images in living cells. Chemical Communications, 2010, 46(35): 6418–6436

[9]

Xu K, Wang F, Pan X, Liu R, Ma J, Kong F, Tang B. High selectivity imaging of nitroreductase using a near-infrared fluorescence probe in hypoxic tumor. Chemical Communications, 2013, 49(25): 2554–2556

[10]

Wan Q Q, Gao X H, He X Y, Chen S M, Song Y C, Gong Q Y, Li X H, Ma H M. A cresyl violet-based fluorescent off-on probe for the detection and Imaging of hypoxia and nitroreductase in living organisms. Chemistry, an Asian Journal, 2014, 9(8): 2058–2062

[11]

Yuan J, Xu Y Q, Zhou N N, Wang R, Qian X H, Xu Y F. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging. RSC Advances, 2014, 4(99): 56207–56210

[12]

Wong R H F, Kwong T, Yau K H, Au-Yeung H Y. Real time detection of live microbes using a highly sensitive bioluminescent nitroreductase probe. Chemical Communications, 2015, 51(21): 4440–4442

[13]

Xu J, Sun S, Li Q, Yue Y, Li Y, Shao S. A rapid response “turn-on” fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging. Analyst (London), 2015, 140(2): 574–581

[14]

Zhou J, Shi W, Li L H, Gong Q Y, Wu X F, Li X H, Ma H M. A lysosome-targeting fluorescence off-on probe for Imaging of nitroreductase and hypoxia in live cells. Chemistry, an Asian Journal, 2016, 11(19): 2719–2724

[15]

Jin C, Zhang Q, Lu W. Selective turn-on near-infrared fluorescence probe for hypoxic tumor cell imaging. RSC Advances, 2017, 7(30): 18217–18223

[16]

Huang B, Chen W, Kuang Y Q, Liu W, Liu X J, Tang L J, Jiang J H. A novel off-on fluorescent probe for sensitive imaging of mitochondria-specific nitroreductase activity in living tumor cells. Organic & Biomolecular Chemistry, 2017, 15(20): 4383–4389

[17]

Zhou Y, Bobba K N, Lv X W, Yang D, Velusamy N, Zhang J F, Bhuniya S. A biotinylated piperazine-rhodol derivative: A ‘turn-on’ probe for nitroreductase triggered hypoxia imaging. Analyst (London), 2017, 142(2): 345–350

[18]

Cui L, Zhong Y, Zhu W, Xu Y, Du Q, Wang X, Qian X, Xiao Y. A new prodrug-derived ratiometric fluorescent probe for hypoxia: High selectivity of nitroreductase and imaging in tumor cell. Organic Letters, 2011, 13(5): 928–931

[19]

Cai Q, Yu T, Zhu W, Xu Y, Qian X. A turn-on fluorescent probe for tumor hypoxia imaging in living cells. Chemical Communications, 2015, 51(79): 14739–14741

[20]

Chevalier A, Zhang Y, Khdour O M, Kaye J B, Hecht S M. Mitochondrial nitroreductase activity enables selective imaging and therapeutic targeting. Journal of the American Chemical Society, 2016, 138(37): 12009–12012

[21]

Li Z, He X, Wang Z, Yang R, Shi W, Ma H. In vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off-on probe. Biosensors & Bioelectronics, 2015, 63: 112–116

[22]

Li Z, Li X, Gao X, Zhang Y, Shi W, Ma H. Nitroreductase detection and hypoxic tumor cell Imaging by a designed sensitive and selective fluorescent probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one. Analytical Chemistry, 2013, 85(8): 3926–3932

[23]

Li Z, Gao X, Shi W, Li X, Ma H. 7-((5-Nitrothiophen-2-yl)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase. Chemical Communications, 2013, 49(52): 5859–5861

[24]

You X, Li L, Li X, Ma H, Zhang G, Zhang D. A new tetraphenylethylene-derived fluorescent probe for nitroreductase detection and hypoxic-tumor-cell imaging. Chemistry, an Asian Journal, 2016, 11(20): 2918–2923

[25]

Ao X, Bright S A, Taylor N C, Elmes R B P. 2-Nitroimidazole based fluorescent probes for nitroreductase; monitoring reductive stress in cellulo. Organic & Biomolecular Chemistry, 2017, 15(29): 6104–6108

[26]

Sedgwick A C, Sun X L, Kim G, Yoon J, Bull S D, James T D. Boronate based fluorescence (ESIPT) probe for peroxynitrite. Chemical Communications, 2016, 52(83): 12350–12352

[27]

Sun X, Xu Q, Kim G, Flower S E, Lowe J P, Yoon J, Fossey J S, Qian X, Bull S D, James T D. A water-soluble boronate-based fluorescent probe for the selective detection of peroxynitrite and imaging in living cells. Chemical Science (Cambridge), 2014, 5(9): 3368–3373

[28]

Gu K Z, Xu Y S, Li H, Guo Z Q, Zhu S J, Zhu S Q, Shi P, James T D, Tian H, Zhu W H. Real-time tracking and in vivo visualization of beta-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. Journal of the American Chemical Society, 2016, 138(16): 5334–5340

[29]

Li M, Wu X M, Wang Y, Li Y S, Zhu W H, James T D. A near-infrared colorimetric fluorescent chemodosimeter for the detection of glutathione in living cells. Chemical Communications, 2014, 50(14): 1751–1753

[30]

Sedgwick A C, Chapman R S L, Gardiner J E, Peacock L R, Kim G, Yoon J, Bull S D, James T D. A bodipy based hydroxylamine sensor. Chemical Communications, 2017, 53(75): 10441–10443

[31]

Sedgwick A C, Han H, Gardiner J E, Bull S D, He X P, James T D. Long-wavelength fluorescent boronate probes for the detection and intracellular imaging of peroxynitrite. Chemical Communications, 2017, 53(95): 12822–12825

[32]

Matikonda S S, Fairhall J M, Tyndall J D A, Hook S, Gamble A B. Stability, kinetic, and mechanistic investigation of 1,8-self-immolative cinnamyl ether spacers for controlled release of phenols and generation of resonance and inductively stabilized methides. Organic Letters, 2017, 19(3): 528–531

[33]

Kwon N, Cho M K, Park S J, Kim D, Nam S J, Cui L, Kim H M, Yoon J. An efficient two-photon fluorescent probe for human NAD(P)H: Quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Chemical Communications, 2017, 53(3): 525–528

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF (168KB)

Supplementary files

Supplementary Material 1

2786

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/