Novel method for the preparation of Cs-containing FAU(Y) catalysts for aniline methylation

Olga A. Ponomareva, Polina A. Shaposhnik, Marina V. Belova, Boris A. Kolozhvari, Irina I. Ivanova

PDF(286 KB)
PDF(286 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 70-76. DOI: 10.1007/s11705-017-1694-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel method for the preparation of Cs-containing FAU(Y) catalysts for aniline methylation

Author information +
History +

Abstract

Cs-containing FAU(Y)-type zeolite catalysts were prepared by conventional and novel ion exchange procedures followed by incipient wetness impregnation with CsOH. The novel ion exchange procedure involved hydrothermal treatment of NaY zeolite in aqueous solution of CsCl at 140–200 °C for 6–24 h. The samples were characterized by low-temperature nitrogen adsorption, X-ray fluorescence analysis, X-ray powder diffraction, scanning electron microscopy, 23Na, 27Al and 133Cs magic angle spinning nuclear magnetic resonance, CO2 and NH3-Temperature programmed desorption. The results show that hydrothermal treatment at 200 °C allows to obtain higher degrees of ion-exchange (up to 83%) with respect to conventional method giving maximum 66%–69%. Catalytic properties of Cs-containing FAU(Y) were studied in aniline methylation. The yield of N-methylaniline is shown to correlate with catalyst’s basicity. The best catalyst performance was achieved over the catalyst with the highest ion-exchange degree impregnated with CsOH. The selectivity to N-methylaniline over this catalyst reached 96.4%.

Graphical abstract

Keywords

FAU(Y) zeolite / ion exchange with cesium / aniline alkylation / N-methylaniline

Cite this article

Download citation ▾
Olga A. Ponomareva, Polina A. Shaposhnik, Marina V. Belova, Boris A. Kolozhvari, Irina I. Ivanova. Novel method for the preparation of Cs-containing FAU(Y) catalysts for aniline methylation. Front. Chem. Sci. Eng., 2018, 12(1): 70‒76 https://doi.org/10.1007/s11705-017-1694-3

References

[1]
Jacobs P A, Uytterhoeven  J B. Active sites in zeolites: Part 7. Isopropanol dehydrogenation over alkali cation-exchanged X and Y zeolites. Journal of Catalysis, 1977, 50(1): 109–114
CrossRef Google scholar
[2]
Hathaway P E, Davis  M E. Base catalysis by alkali-modified zeolites: I. Catalytic activity. Journal of Catalysis, 1989, 116(1): 263–278
CrossRef Google scholar
[3]
Hathaway P E, Davis  M E. Base catalysis by alkali-modified zeolites: II. Nature of the active site. Journal of Catalysis, 1989, 116(1): 279–284
CrossRef Google scholar
[4]
Cocepcion-Heydorn P,  Jia C, Herein  D, Pfander N,  Karge H G,  Jentoft F C. Structural and catalytic properties of sodium and cesium exchanged X and Y zeolites, and germanium-substituted X zeolite. Journal of Molecular Catalysis A Chemical, 2000, 162(1-2): 227–246
CrossRef Google scholar
[5]
Bordawekar S V,  Davis R J. Probing the basic character of alkali-modified zeolites by CO2 adsorption microcalorimetry, butene isomerization, and toluene alkylation with ethylene. Journal of Catalysis, 2000, 189(1): 79–90
CrossRef Google scholar
[6]
Kim J C, Li  H X, Chen  C Y, Davis  M E. Base catalysis by intrazeolitic cesium oxides. Microporous Materials, 1994, 2(5): 413–423
CrossRef Google scholar
[7]
Wieland W S, Davis  R J, Garses  J M. Side-chain alkylation of toluene with methanol over alkali-exchanged zeolites X, Y, L, and β. Journal of Catalysis, 1998, 173(2): 490–500
CrossRef Google scholar
[8]
Borgna A, Sepulveda  J, Magni S I,  Apesteguia C R. Active sites in the alkylation of toluene with methanol: A study by selective acid–base poisoning. Applied Catalysis A, General, 2004, 276(1-2): 207–215
CrossRef Google scholar
[9]
Palomares A E,  Eder-mirth G,  Rep M, Lercher  J A. Alkylation of toluene over basic catalysts—key requirements for side chain alkylation. Journal of Catalysis, 1998, 180(1): 56–65
CrossRef Google scholar
[10]
Sooknoi T, Dwyer  J. Role of substrate’s electrophilicity in base catalysis by zeolites: Alkylation of acetonitrile with methanol. Journal of Molecular Catalysis A Chemical, 2004, 211(1-2): 155–164
CrossRef Google scholar
[11]
Su B L, Barthomeuf  D. Alkylation of aniline with methanol: Change in selectivity with acido-basicity of faujasite catalysts. Applied Catalysis A, General, 1995, 124(1): 73–80
CrossRef Google scholar
[12]
Ivanova I I, Pomakhina  E B, Rebrov  A I, Wang  W, Hunger M,  Weitkamp J. Mechanism of aniline methylation on zeolite catalysts investigated by in situ 13C NMR spectroscopy. Kinetics and Catalysis, 2003, 44(5): 701–709
CrossRef Google scholar
[13]
Danuthai T, Sooknoi  T, Jongpatiwut S,  Rirksomboon T,  Osuwan S,  Resasco D E. Effect of extra-framework cesium on the deoxygenation of methylester over CsNaX zeolites. Applied Catalysis A, General, 2004, 409-410: 74–81
CrossRef Google scholar
[14]
Tsou J, Magnoux  P, Guisnet P,  Orfao J J M,  Figueiredo J L. Catalytic oxidation of methyl-isobutyl-ketone over basic zeolites. Applied Catalysis B: Environmental, 2004, 51(2): 129–133
CrossRef Google scholar
[15]
Sherry H S. The ion-exchange properties of zeolites. I. Univalent ion exchange in synthetic faujasite. Journal of Physical Chemistry, 1966, 70(4): 1158–1168
CrossRef Google scholar
[16]
Norby P, Poshni  F I, Gualtiery  A F, Hanson  J C, Grey  C P. Cation migration in zeolites: An in situ  powder diffraction and MAS NMR study of the structure of zeolite Cs(Na)-Y during dehydration. Journal of Physical Chemistry B, 1998, 102(5): 839–856
CrossRef Google scholar
[17]
Koller H, Burger  B, Schneider A M,  Engelhardt G,  Weitkamp J. Location of Na+ and Cs+ cations in CsNaY zeolites studied by 23Na and 133Cs magic-angle spinning nuclear magnetic resonance spectroscopy combined with X-ray structure analysis by Rietveld refinement. Microporous Materials, 1995, 5(4): 219–232
CrossRef Google scholar
[18]
Wei R, Guo  M, Wang J. Preparation, characterization and catalytic behavior of 12-molybdophosphoric acid encapsulated in the supercage of Cs+-exchanged Y zeolite. Chinese Journal of Chemical Engineering, 2009, 17(1): 58–63
CrossRef Google scholar
[19]
Hunger M, Engelhardt  G, Koller H,  Weitkamp J. Characterization of sodium cations in dehydrated faujasites and zeolite EMT by 23Na DOR, 2D nutation, and MAS NMR. Solid State Nuclear Magnetic Resonance, 1993, 2(3): 111–120
CrossRef Google scholar
[20]
Hunger M, Schenk  U, Buchholz A. Mobility of cations and guest compounds in cesium-exchanged and impregnated zeolites Y and X investigated by high-temperature MAS NMR spectroscopy. Journal of Physical Chemistry B, 2000, 104(51): 12230–12236
CrossRef Google scholar
[21]
Jelinek R, Malek  A, Ozin G A. 23Na synchronized double-rotation NMR study of Cs+, Ca2+, and La3+ cation-exchanged sodium zeolite Y. Journal of Physical Chemistry B, 1995, 99(22): 9236–9240
CrossRef Google scholar
[22]
Mortier W J. Zeolite electronegativity related to physicochemical properties. Journal of Catalysis, 1978, 55(2): 138–145
CrossRef Google scholar

Acknowledgments

This work was supported by Russian Science Foundation (Project No. 14-23-00094).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(286 KB)

Accesses

Citations

Detail

Sections
Recommended

/