Tetrazole tethered polymers for alkaline anion exchange membranes

Erigene Bakangura , Yubin He , Xiaolin Ge , Yuan Zhu , Liang Wu , Jin Ran , Congliang Cheng , Kamana Emmanuel , Zhengjin Yang , Tongwen Xu

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 306 -310.

PDF (173KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 306 -310. DOI: 10.1007/s11705-017-1690-7
COMMUNICATION
COMMUNICATION

Tetrazole tethered polymers for alkaline anion exchange membranes

Author information +
History +
PDF (173KB)

Abstract

Poly(2,6-dimethyl-1,4-phenylene oxide) was tethered with a 1,5-disubstituted tetrazole through a quaternary ammonium linkage. The formation of a tetrazole-ion network in the resulting polymers was found to promote the hydroxide ion transport through the Grotthus-type mechanism.

Graphical abstract

Keywords

anion exchange membrane / fuel cell / phase separation / tetrazole

Cite this article

Download citation ▾
Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu. Tetrazole tethered polymers for alkaline anion exchange membranes. Front. Chem. Sci. Eng., 2018, 12(2): 306-310 DOI:10.1007/s11705-017-1690-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, . Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951

[2]

McLean G F, Niet T, Prince-Richard S, Djilali N. An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 2002, 27(5): 507–526

[3]

Gair S, Cruden A, McDonald J, Hegarty T, Chesshire M. Fuel cells for power generation and waste treatment. Journal of Power Sources, 2006, 154(2): 472–478 doi:10.1016/j.jpowsour.2005.10.075

[4]

Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells (Weinheim), 2005, 5(2): 187–200

[5]

Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, Mustain W E, Nijmeijer K, Scott K, Xu T, Zhuang L. Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science, 2014, 7(10): 3135–3191

[6]

Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011, 377(1-2): 1–35

[7]

Pan J, Chen C, Li Y, Wang L, Tan L, Li G, Tang X, Xiao L, Lu J, Zhuang L. Constructing ionic highway in alkaline polymer electrolytes. Energy & Environmental Science, 2014, 7(1): 354–360

[8]

Li N, Yan T, Li Z, Thurn-Albrecht T, Binder W H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy & Environmental Science, 2012, 5(7): 7888–7892

[9]

Li N, Leng Y, Hickner M A, Wang C Y. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. Journal of the American Chemical Society, 2013, 135(27): 10124–10133

[10]

Li Q, Liu L, Miao Q, Jin B, Bai R. A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chemical Communications, 2014, 50(21): 2791–2793

[11]

Ran J, Wu L, Wei B, Chen Y, Xu T. Simultaneous enhancements of conductivity and stability for anion exchange membranes (AEMs) through precise structure design. Scientific Reports, 2014, 4(1): 6486

[12]

Ran J, Wu L, Xu T. Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers. Polymer Chemistry, 2013, 4(17): 4612–4620

[13]

Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown N B, Guiver M D, Wu L, Xu T. Highly conductive anion-exchange membranes from microporous Troger’s base polymers. Angewandte Chemie International Edition in English, 2016, 55(38): 11499–11502

[14]

Hickner M A, Herring A M, Coughlin E B. Anion exchange membranes: Current status and moving forward. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1727–1735

[15]

He Y, Pan J, Wu L, Zhu Y, Ge X, Ran J, Yang Z, Xu T. A novel methodology to synthesize highly conductive anion exchange membranes. Scientific Reports, 2015, 5(1): 13417

[16]

Si J, Lu S, Xu X, Peng S, Xiu R, Xiang Y. A gemini quaternary ammonium poly(ether ether ketone) anion-exchange membrane for alkaline fuel cell: Design, synthesis, and properties. ChemSusChem, 2014, 7(12): 3389–3395

[17]

Pan J, Zhu L, Han J, Hickner M A. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chemistry of Materials, 2015, 27(19): 6689–6698

[18]

Ran J, Wu L, Ge Q, Chen Y, Xu T. High performance anion exchange membranes obtained through graft architecture and rational cross-linking. Journal of Membrane Science, 2014, 470: 229–236

[19]

Wu L, Pan Q, Varcoe J R, Zhou D, Ran J, Yang Z, Xu T. Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. Journal of Membrane Science, 2015, 490: 1–8

[20]

Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability. Chemical Communications, 2014, 50(31): 4092–4095

[21]

Zhang M, Liu J, Wang Y, An L, Guiver M D, Li N. Highly stable anion exchange membranes based on quaternized polypropylene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(23): 12284–12296

[22]

Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T. A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 15015–15019

[23]

Han J, Peng H, Pan J, Wei L, Li G, Chen C, Xiao L, Lu J, Zhuang L. Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. ACS Applied Materials & Interfaces, 2013, 5(24): 13405–13411

[24]

Gu S, Skovgard J, Yan Y S. Engineering the Van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. ChemSusChem, 2012, 5(5): 843–848

[25]

Li N, Guiver M D, Binder W H. Towards high conductivity in anion-exchange membranes for alkaline fuel cells. ChemSusChem, 2013, 6(8): 1376–1383

[26]

Song M K, Li H, Li J, Zhao D, Wang J, Liu M. Tetrazole-based, anhydrous proton exchange membranes for fuel cells. Advanced Materials, 2014, 26(8): 1277–1282

[27]

Gao H, Shreeve J M. Azole-based energetic salts. Chemical Reviews, 2011, 111(11): 7377–7436

[28]

Karaghiosoff K, Klapötke T M, Mayer P, Sabaté C M, Penger A, Welch J M. Salts of methylated 5-aminotetrazoles with energetic anions. Inorganic Chemistry, 2008, 47(3): 1007–1019

[29]

Klapötke T M, Miró Sabaté C, Penger A, Rusan M, Welch J M. Energetic salts of low-symmetry methylated 5-aminotetrazoles. European Journal of Inorganic Chemistry, 2009, 2009(7): 880–896

[30]

Lu D, Winter C H. Complexes of the [K(18-Crown-6)]+ fragment with bis(tetrazolyl)borate ligands: unexpected boron-nitrogen bond isomerism and associated enforcement of k3-N,N′,H-ligand chelation. Inorganic Chemistry, 2010, 49(13): 5795–5797

[31]

Allen F H, Groom C R, Liebeschuetz J W, Bardwell D A, Olsson T S G, Wood P A. The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: The structural basis for tetrazole-carboxylic acid bioisosterism. Journal of Chemical Information and Modeling, 2012, 52(3): 857–866

[32]

Tsarevsky N V, Bernaerts K V, Dufour B, Du Prez F E, Matyjaszewski K. Well-defined (Co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (Co)polymerization of acrylonitrile and “click chemistry”-type postpolymerization modification. Macromolecules, 2004, 37(25): 9308–9313

[33]

Tsai T H, Maes A M, Vandiver M A, Versek C, Seifert S, Tuominen M, Liberatore M W, Herring A M, Coughlin E B. Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1751–1760

[34]

Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochemistry Communications, 2000, 2(10): 697–702

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (173KB)

Supplementary files

Supplementary Material 1

2309

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/