Tetrazole tethered polymers for alkaline anion exchange membranes

Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu

PDF(173 KB)
PDF(173 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 306-310. DOI: 10.1007/s11705-017-1690-7
COMMUNICATION
COMMUNICATION

Tetrazole tethered polymers for alkaline anion exchange membranes

Author information +
History +

Abstract

Poly(2,6-dimethyl-1,4-phenylene oxide) was tethered with a 1,5-disubstituted tetrazole through a quaternary ammonium linkage. The formation of a tetrazole-ion network in the resulting polymers was found to promote the hydroxide ion transport through the Grotthus-type mechanism.

Graphical abstract

Keywords

anion exchange membrane / fuel cell / phase separation / tetrazole

Cite this article

Download citation ▾
Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu. Tetrazole tethered polymers for alkaline anion exchange membranes. Front. Chem. Sci. Eng., 2018, 12(2): 306‒310 https://doi.org/10.1007/s11705-017-1690-7

References

[1]
Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, . Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951
CrossRef Google scholar
[2]
McLean G F, Niet T, Prince-Richard S, Djilali N. An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 2002, 27(5): 507–526
CrossRef Google scholar
[3]
Gair S, Cruden A, McDonald J, Hegarty T, Chesshire M. Fuel cells for power generation and waste treatment. Journal of Power Sources, 2006, 154(2): 472–478 doi:10.1016/j.jpowsour.2005.10.075
[4]
Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells (Weinheim), 2005, 5(2): 187–200
CrossRef Google scholar
[5]
Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, Mustain W E, Nijmeijer K, Scott K, Xu T, Zhuang L. Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science, 2014, 7(10): 3135–3191
CrossRef Google scholar
[6]
Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011, 377(1-2): 1–35
CrossRef Google scholar
[7]
Pan J, Chen C, Li Y, Wang L, Tan L, Li G, Tang X, Xiao L, Lu J, Zhuang L. Constructing ionic highway in alkaline polymer electrolytes. Energy & Environmental Science, 2014, 7(1): 354–360
CrossRef Google scholar
[8]
Li N, Yan T, Li Z, Thurn-Albrecht T, Binder W H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy & Environmental Science, 2012, 5(7): 7888–7892
CrossRef Google scholar
[9]
Li N, Leng Y, Hickner M A, Wang C Y. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. Journal of the American Chemical Society, 2013, 135(27): 10124–10133
CrossRef Google scholar
[10]
Li Q, Liu L, Miao Q, Jin B, Bai R. A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chemical Communications, 2014, 50(21): 2791–2793
CrossRef Google scholar
[11]
Ran J, Wu L, Wei B, Chen Y, Xu T. Simultaneous enhancements of conductivity and stability for anion exchange membranes (AEMs) through precise structure design. Scientific Reports, 2014, 4(1): 6486
CrossRef Google scholar
[12]
Ran J, Wu L, Xu T. Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers. Polymer Chemistry, 2013, 4(17): 4612–4620
CrossRef Google scholar
[13]
Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown N B, Guiver M D, Wu L, Xu T. Highly conductive anion-exchange membranes from microporous Troger’s base polymers. Angewandte Chemie International Edition in English, 2016, 55(38): 11499–11502
CrossRef Google scholar
[14]
Hickner M A, Herring A M, Coughlin E B. Anion exchange membranes: Current status and moving forward. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1727–1735
CrossRef Google scholar
[15]
He Y, Pan J, Wu L, Zhu Y, Ge X, Ran J, Yang Z, Xu T. A novel methodology to synthesize highly conductive anion exchange membranes. Scientific Reports, 2015, 5(1): 13417
CrossRef Google scholar
[16]
Si J, Lu S, Xu X, Peng S, Xiu R, Xiang Y. A gemini quaternary ammonium poly(ether ether ketone) anion-exchange membrane for alkaline fuel cell: Design, synthesis, and properties. ChemSusChem, 2014, 7(12): 3389–3395
CrossRef Google scholar
[17]
Pan J, Zhu L, Han J, Hickner M A. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chemistry of Materials, 2015, 27(19): 6689–6698
CrossRef Google scholar
[18]
Ran J, Wu L, Ge Q, Chen Y, Xu T. High performance anion exchange membranes obtained through graft architecture and rational cross-linking. Journal of Membrane Science, 2014, 470: 229–236
CrossRef Google scholar
[19]
Wu L, Pan Q, Varcoe J R, Zhou D, Ran J, Yang Z, Xu T. Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. Journal of Membrane Science, 2015, 490: 1–8
CrossRef Google scholar
[20]
Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability. Chemical Communications, 2014, 50(31): 4092–4095
CrossRef Google scholar
[21]
Zhang M, Liu J, Wang Y, An L, Guiver M D, Li N. Highly stable anion exchange membranes based on quaternized polypropylene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(23): 12284–12296
CrossRef Google scholar
[22]
Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T. A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 15015–15019
CrossRef Google scholar
[23]
Han J, Peng H, Pan J, Wei L, Li G, Chen C, Xiao L, Lu J, Zhuang L. Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. ACS Applied Materials & Interfaces, 2013, 5(24): 13405–13411
CrossRef Google scholar
[24]
Gu S, Skovgard J, Yan Y S. Engineering the Van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. ChemSusChem, 2012, 5(5): 843–848
CrossRef Google scholar
[25]
Li N, Guiver M D, Binder W H. Towards high conductivity in anion-exchange membranes for alkaline fuel cells. ChemSusChem, 2013, 6(8): 1376–1383
CrossRef Google scholar
[26]
Song M K, Li H, Li J, Zhao D, Wang J, Liu M. Tetrazole-based, anhydrous proton exchange membranes for fuel cells. Advanced Materials, 2014, 26(8): 1277–1282
CrossRef Google scholar
[27]
Gao H, Shreeve J M. Azole-based energetic salts. Chemical Reviews, 2011, 111(11): 7377–7436
CrossRef Google scholar
[28]
Karaghiosoff K, Klapötke T M, Mayer P, Sabaté C M, Penger A, Welch J M. Salts of methylated 5-aminotetrazoles with energetic anions. Inorganic Chemistry, 2008, 47(3): 1007–1019
CrossRef Google scholar
[29]
Klapötke T M, Miró Sabaté C, Penger A, Rusan M, Welch J M. Energetic salts of low-symmetry methylated 5-aminotetrazoles. European Journal of Inorganic Chemistry, 2009, 2009(7): 880–896
CrossRef Google scholar
[30]
Lu D, Winter C H. Complexes of the [K(18-Crown-6)]+ fragment with bis(tetrazolyl)borate ligands: unexpected boron-nitrogen bond isomerism and associated enforcement of k3-N,N′,H-ligand chelation. Inorganic Chemistry, 2010, 49(13): 5795–5797
CrossRef Google scholar
[31]
Allen F H, Groom C R, Liebeschuetz J W, Bardwell D A, Olsson T S G, Wood P A. The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: The structural basis for tetrazole-carboxylic acid bioisosterism. Journal of Chemical Information and Modeling, 2012, 52(3): 857–866
CrossRef Google scholar
[32]
Tsarevsky N V, Bernaerts K V, Dufour B, Du Prez F E, Matyjaszewski K. Well-defined (Co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (Co)polymerization of acrylonitrile and “click chemistry”-type postpolymerization modification. Macromolecules, 2004, 37(25): 9308–9313
CrossRef Google scholar
[33]
Tsai T H, Maes A M, Vandiver M A, Versek C, Seifert S, Tuominen M, Liberatore M W, Herring A M, Coughlin E B. Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1751–1760
CrossRef Google scholar
[34]
Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochemistry Communications, 2000, 2(10): 697–702
CrossRef Google scholar

Acknowledgement

This project has been supported by the National Natural Science Foundation of China (Grant No. 91534203) and K. C. Wong Education Foundation (2016-11). Erigene Bakangura is grateful to CAS-TWAS President’s fellowship for PhD programs.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-017-1690-7 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(173 KB)

Accesses

Citations

Detail

Sections
Recommended

/