High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process

Dali Cai , Yu Cui , Zhao Jia , Yao Wang , Fei Wei

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 77 -82.

PDF (250KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 77 -82. DOI: 10.1007/s11705-017-1684-5
RESEARCH ARTICLE
RESEARCH ARTICLE

High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process

Author information +
History +
PDF (250KB)

Abstract

The methanol-to-olefin (MTO) process has attracted much attention and many problems including lifetime and selectivity of light olefins have all been connected to the diffusion problems in zeolite crystals. However, a quantitative study of diffusion problems in SAPO-34 zeolites is lacking. In this paper, we performed a high-precision diffusion measurement of the diffusion behavior of ethane and propane, which represent ethylene and propylene respectively, over SAPO-34. The diffusions of ethane and propane over fresh and coked SAPO-34 zeolites with different crystal sizes were carefully studied. Ethane and propane show different diffusion behavior in SAPO-34. The diffusion of ethane is almost not influenced by the crystal size and coke percentage, whereas that of propane is strongly affected. A slower diffusion velocity was observed in bigger crystals, and the diffusion velocity decline significantly with the coke percentage increasing. The diffusion coefficient was calculated with both the internal and surface diffusion models, and the results show that the surface diffusion plays a key role in the diffusion process of both ethane and propane. We believe that this work would be helpful for understanding the diffusion of different molecules in SAPO-34 zeolites, and may lay the foundation of MTO research.

Graphical abstract

Keywords

diffusion measurement / methanol-to-olefin process

Cite this article

Download citation ▾
Dali Cai, Yu Cui, Zhao Jia, Yao Wang, Fei Wei. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process. Front. Chem. Sci. Eng., 2018, 12(1): 77-82 DOI:10.1007/s11705-017-1684-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Su D SWen  GWu S Peng FSchlögl  R. Carbocatalysis in liquid-phase reactions. Angewandte Chemie International Edition201756(4): 936–964

[2]

Losch PPinar  A BWillinger  M GSoukup  KChavan S Vincent B Pale PLouis  B. H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. Journal of Catalysis2017345: 11–23

[3]

Liang TChen  JQin Z Li JWang  PWang S Wang GDong  MFan W Wang J. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting. ACS Catalysis20166(11): 7311–7325

[4]

Fickel D WSabnis  K DLi  LKulkarni N Winter L R Yan BChen  J G. Chloromethane to olefins over H-SAPO-34: Probing the hydrocarbon pool mechanism. Applied Catalysis A, General2016527: 146–151

[5]

Li YZhang  MWang D Wei FWang  Y. Differences in the methanol-to-olefins reaction catalyzed by SAPO-34 with dimethyl ether as reactant. Journal of Catalysis2014311: 281–287

[6]

Li JWei  YLiu G Qi YTian  PLi B He YLiu  Z. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catalysis Today2011171(1): 221–228

[7]

Sun XMueller  SShi H Haller G L Sanchez-Sanchez M van Veen A C Lercher J A. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis2014314: 21–31

[8]

Sun XMueller  SLiu Y Shi HHaller  G LSanchez-Sanchez  Mvan Veen A C Lercher J A. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. Journal of Catalysis2014317: 185–197

[9]

Ilias SBhan  A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis20133(1): 18–31

[10]

Zhou HWang  YWei F Wang DWang  Z. Kinetics of the reactions of the light alkenes over SAPO-34. Applied Catalysis A, General2008348(1): 135–141

[11]

Li MWang  YBai L Chang N Nan GHu  DZhang Y Wei W. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process. Applied Catalysis A, General2017531: 203–211

[12]

Wu X CAbraha  M GAnthony  R G. Methanol conversion on SAPO-34: Reaction condition for fixed-bed reactor. Applied Catalysis A, General2004260(1): 63–69

[13]

Wei YLi  JYuan C Xu SZhou  YChen J Wang QZhang  QLiu Z. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol. Chemical Communications201248(25): 3082

[14]

Li YHuang  YGuo J Zhang M Wang DWei  FWang Y. Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catalysis Today2014233: 2–7

[15]

Wei ZChen  YLi J Wang PJing  BHe Y Dong MJiao  HQin Z Wang J. Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34. Catalysis Science & Technology20166(14): 5526–5533

[16]

Xu SZheng  AWei Y Chen JLi  JChu Y Zhang M Wang QZhou  YWang J. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angewandte Chemie International Edition201352(44): 11564–11568

[17]

Qi LLi  JWei Y Xu LLiu  Z. Role of naphthalene during the induction period of methanol conversion on HZSM-5 zeolite. Catalysis Science & Technology20166(11): 3737–3744

[18]

Wei YYuan  CLi J Xu SZhou  YChen J Wang QXu  LQi Y Zhang Q Liu Z. Coke formation and carbon atom economy of methanol-to-olefins reaction. ChemSusChem20125(5): 906–912

[19]

Tian PWei  YYe M Liu Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catalysis20155(3): 1922–1938

[20]

Chen DRebo  H PMoljord  KHolmen A. Methanol conversion to light olefins over SAPO-34. Sorption, diffusion, and catalytic reactions. Industrial & Engineering Chemistry Research199938(11): 4241–4249

[21]

Aguayo A TDel Campo  AGayubo A G Tarrio A Bilbao J. Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)199974(4): 315–321

[22]

Hwang APrieto-Centurion  DBhan A. Isotopic tracer studies of methanol-to-olefins conversion over HSAPO-34: The role of the olefins-based catalytic cycle. Journal of Catalysis2016337: 52–56

[23]

Yang GWei  YXu S Chen JLi  JLiu Z Yu JXu  R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. Journal of Physical Chemistry C2013117(16): 8214–8222

[24]

Zhu WKapteijn  FMoulijn J A den Exter M C Jansen J C. Shape selectivity in adsorption on the all-silica DD3R. Langmuir200016(7): 3322–3329

[25]

Olson D HCamblor  M AVillaescusa  L AKuehl  G H. Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials200467(1): 27–33

[26]

Cui YZhang  QHe J Wang YWei  F. Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology201311(4): 468–474

[27]

Bhatia S KPerlmutter  D D. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE Journal. American Institute of Chemical Engineers198127(2): 247–254

[28]

Thiele E W. Relation between catalytic activity and size of particle. Industrial & Engineering Chemistry193931(7): 916–920

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (250KB)

3476

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/