Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3

Zhao Peng, Li-Hua Chen, Ming-Hui Sun, Pan Wu, Chang Cai, Zhao Deng, Yu Li, Wei-Hong Zheng, Bao-Lian Su

PDF(411 KB)
PDF(411 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 43-49. DOI: 10.1007/s11705-017-1679-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3

Author information +
History +

Abstract

This study described a template-free method for the synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based catalysts was also investigated for the selective reduction of NO with NH3. The results show that the catalytic performance of TiO2 based catalysts was improved greatly after Mn doping. Meanwhile, the Mn-TiO2 catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.

Graphical abstract

Keywords

titania / hierarchically macro-mesoporous structure / Mn-doping / selective catalytic reduction

Cite this article

Download citation ▾
Zhao Peng, Li-Hua Chen, Ming-Hui Sun, Pan Wu, Chang Cai, Zhao Deng, Yu Li, Wei-Hong Zheng, Bao-Lian Su. Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3. Front. Chem. Sci. Eng., 2018, 12(1): 43‒49 https://doi.org/10.1007/s11705-017-1679-2

References

[1]
Fu M F, Li C T, Lu P, Qu L, Zhang M Y, Zhou Y, Yu M G, Fang Y. A review on selective catalytic reduction of NOx by supported catalysts at 100‒300 °C-catalysts, mechanism, kinetics. Catalysis Science & Technology, 2014, 4(1): 14–25
CrossRef Google scholar
[2]
Xiong S C, Xiao X, Liao Y, Dang H, Shan W P, Yang S J. Global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2: Relationship between the SCR performance and the key factors. Industrial & Engineering Chemistry Research, 2015, 54(44): 11011–11023
CrossRef Google scholar
[3]
Lietti L, Alemany J L, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F. Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catalysis Today, 1996, 29(1-4): 143–148
CrossRef Google scholar
[4]
Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. Characterization and reactivity of V2O5-MoO3/TiO2 De-NOx SCR catalysts. Journal of Catalysis, 1999, 187(2): 419–435
CrossRef Google scholar
[5]
Buscaa G, Liettib L, Ramisa G, Bertic F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 1998, 18(1): 1–36
CrossRef Google scholar
[6]
Heck R M. Catalytic abatement of nitrogen oxides–stationary applications. Catalysis Today, 1999, 53(4): 519–523
CrossRef Google scholar
[7]
Carja G, Kameshima Y, Okada K, Madhusoodana C D. Mn-Ce/ZSM-5 as a new superior catalyst for NO reduction with NH3. Applied Catalysis B: Environmental, 2007, 73(1-2): 60–64
CrossRef Google scholar
[8]
Tang X L, Hao J M, Yi H H, Li J H. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today, 2007, 126(3): 406–411
CrossRef Google scholar
[9]
Went G T, Leu L J, Rosin R R, Bell A T. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3. Journal of Catalysis, 1992, 134(2): 492–505
CrossRef Google scholar
[10]
Went G T, Leu L J, Bell A T. Quantitative structural analysis of dispersed vanadia species in TiO2(anatase)-supported V2O5. Journal of Catalysis, 1992, 134(2): 479–491
CrossRef Google scholar
[11]
Alemany L J, Berti F, Busca G, Ramis G, Robba D, Toledo G P, Trombetta M. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts. Applied Catalysis B: Environmental, 1996, 10(4): 299–311
CrossRef Google scholar
[12]
Chen J P, Yang R T. Selective catalytic reduction of NO with NH3 on SO42‒/TiO2 superacid catalyst. Journal of Catalysis, 1993, 139(1): 277–288
CrossRef Google scholar
[13]
Saur O, Bensitel M, Mohammed S, Lavalley J C, Tripp C P, Morrow B A. The structure and stability of sulfated alumina and titania. Journal of Catalysis, 1986, 99(1): 104–110
CrossRef Google scholar
[14]
Wallin M, Forser S, Thormählen P, Skoglungh M. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia. Industrial & Engineering Chemistry Research, 2004, 43(24): 7723–7731
CrossRef Google scholar
[15]
Kijlstra W S, Brands D S, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. Journal of Catalysis, 1997, 171(1): 208–218
CrossRef Google scholar
[16]
Kim Y J, Kwon H J, Nam I, Choung J W, Kil J K, Kim H, Cha M, Yeo G K. High deNOx performance of Mn/TiO2 catalyst by NH3. Catalysis Today, 2010, 151(3): 244–250
CrossRef Google scholar
[17]
Wu Z B, Jiang B Q, Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2008, 79(4): 347–355
CrossRef Google scholar
[18]
Jiang B Q, Liu Y, Wu Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. Journal of Hazardous Materials, 2009, 162(2-3): 1249–1254
CrossRef Google scholar
[19]
Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 2012, 288: 74–83
CrossRef Google scholar
[20]
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuang Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45(12): 3479–3563
CrossRef Google scholar
[21]
Huang J H, Tong Z Q, Huang Y, Zhang J F. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 2008, 78(3): 309–314
CrossRef Google scholar
[22]
Yu J, Guo F, Wang Y L, Zhu J H, Liu Y Y, Su F B, Gao S Q, Xu G W. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental, 2010, 95(1): 160–168
CrossRef Google scholar
[23]
Shi Y N, Chen S, Sun H, Shu Y, Quan X. Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macro-mesoporous  Mn/TiO2. Catalysis  Communications,  2013, 42: 10–13
CrossRef Google scholar
[24]
Fang C, Shi L Y, Li H R, Huang L, Zhang J P, Zhang D S. Creating hierarchically macro-/mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3. RSC Advances, 2016, 6(82): 78727–78736
CrossRef Google scholar
[25]
Zhang J F, Huang Y, Chen X. Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica. Journal of Natural Gas Chemistry, 2008, 17(3): 273–277
CrossRef Google scholar
[26]
Schill L, Putluru S, Fehrmann R, Jensen A D. Low-temperature NH3-SCR of NO on mesoporous Mn0.6Fe0.4/TiO2 prepared by a hydrothermal method. Catalysis Letters, 2014, 144(3): 395–402
CrossRef Google scholar
[27]
Zhang L, Zhang D S, Zhang J P, Cai S X, Fang C, Huang L, Li H R, Gao R  H, Shi  L  Y. Design  of  meso-TiO2@MnOx-CeOx/CNTs with a  core-shell  structure  as DeNOx  catalysts:  Promotion  of  activity, stability and  SO2-tolerance. Nanoscale,  2013,  5(20):  9821– 9829
CrossRef Google scholar
[28]
Catillon-Mucherie S, Ammari F, Krafft J, Lauron-Pernot H, Touroude R, Louis C. Preparation of coimpregnated Cu-Zn/SiO2 catalysts: Influence of the drying step on metallic particle size and on Cu0‒ZnII interactions. Journal of Physical Chemistry C, 2007, 111(31): 11619–11626
CrossRef Google scholar
[29]
Monshi A, Foroughi M R, Monshi M R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154–160
CrossRef Google scholar
[30]
Blin J, Léonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewandte Chemie, 2003, 42(25): 2872–2875
CrossRef Google scholar
[31]
Deng W H, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65
CrossRef Google scholar
[32]
Dapsens P Y, Hakim S H, Su B L, Shanks B H. Direct observation of macropore self-formation in hierarchically structured metal oxides. Chemical Communications, 2010, 46(47): 8980–8982
CrossRef Google scholar
[33]
Collins A, Carriazo D, Davis S A, Mann S. Spontaneous template-free assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569
CrossRef Google scholar
[34]
Pappas D K, Boningari T, Boolcchand P, Smirniotis P G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3. Journal of Catalysis, 2016, 334: 1–13
CrossRef Google scholar
[35]
Smirniotis P G, Sreekanth P M, Peña D A, Jenkins R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 2006, 45(19): 6436–6443
CrossRef Google scholar
[36]
Choi H J, Kim S S, Hong S C. Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation. Journal of the Air & Waste Management Association, 2012, 62(3): 362–369
CrossRef Google scholar
[37]
Kang M, Yeon T H, Park E D, Yie J E, Kim J M. Novel MnOx catalysts for NO reduction at low temperature with ammonia. Catalysis Letters, 2006, 106(1): 77–80
CrossRef Google scholar
[38]
Boningari T, Ettireddy P R, Somogyvari A, Liu Y, Vorontsov A, McDonald C A, Smirniotis P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis, 2015, 325: 145–155
CrossRef Google scholar

Acknowledgements

This work was carried out in the framework of a program for Changjiang Scholars and Innovative Research Team (IRT_15R52) of the Chinese Ministry of Education. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”, the Chinese Ministry of Education for a “Changjiang Chaire Professor” position and a Clare Hall Life Membership at the Clare Hall College and the financial support of the Department of Chemistry, University of Cambridge. L.H. CHEN acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work was also financially supported by the National Natural Science Foundation of China (Grant Nos. 21671155 and U1663225), Scientific Research Foundation for the Returned Oversea Chinese Scholars, State Education Ministry ([2015]311), Hubei Provincial Natural Science Foundation (2015CFB428).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(411 KB)

Accesses

Citations

Detail

Sections
Recommended

/