Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer

Kimthet Chhouk , Wahyudiono , Hideki Kanda , Shin-Ichro Kawasaki , Motonobu Goto

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 184 -193.

PDF (607KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 184 -193. DOI: 10.1007/s11705-017-1678-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer

Author information +
History +
PDF (607KB)

Abstract

Curcumin is a hydrophobic polyphenol compound exhibiting a wide range of biological activities such as anti-inflammatory, anti-bacterial, anti-fungal, anti-carcinogenic, anti-human immunodeficiency virus, and anti-microbial activity. In this work, a swirl mixer was employed to produce the micronized curcumin with polyvinylpyrrolidone (PVP) by the supercritical anti-solvent process to improve the bioavailability of curcumin. The effects of operating parameters such as curcumin/PVP ratio, feed concentration, temperature, pressure, and CO2 flow rate were investigated. The characterization and solubility of particles were determined by using scanning electron microscopy, Fourier Transform Infrared spectroscopy, and ultra-violet-visible spectroscopy. The result shows that the optimal condition for the production of curcumin/PVP particles is at curcumin/PVP ratio of 1:30, feed concentration of 5 mg·mL1, temperature of 40 °C, pressure of 15 MPa, and CO2 flow rate of 15 mL·min1. Moreover, the dissolution of curcumin/PVP particles is faster than that of raw curcumin.

Graphical abstract

Keywords

micronization / curcumin / polyvinylpyrrolidone / supercritical anti-solvent / swirl mixer

Cite this article

Download citation ▾
Kimthet Chhouk, Wahyudiono, Hideki Kanda, Shin-Ichro Kawasaki, Motonobu Goto. Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front. Chem. Sci. Eng., 2018, 12(1): 184-193 DOI:10.1007/s11705-017-1678-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Moghadamtousi S Z Kadir H A Hassandarvish P Tajik H Abubakar S Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research Internaitonal, 20142014: 1–12

[2]

Anand PKunnumakkara  A BNewman  R AAggarwal  B B. Bioavailability of curcumin: Problems and promise. Molecular Pharmaceutics20074(6): 807–818

[3]

Montes AGordillo  M DPereyra  CMartínez de la Ossa  E J. Polymer and ampicillin co-precipitation by supercritical antisolvent process. Journal of Supercritical Fluids201263: 92–98

[4]

Fernández-Ponce M T Masmoudi Y Djerafi R Casas L Mantell C Monrtínez de la Ossa  EBadens E. Particle design applied to quercetin using supercritical anti-solvent techniques. Journal of Supercritical Fluids2015105: 119–127

[5]

Adami RCapua  A DReverchon  E. Supercritical assisted atomization for the production of curcumin-biopolymer microspheres. Powder Technology2017305: 455–461

[6]

Zabihi FXin  NJia J Chen TZhao  Y. High yield and high loading preparation of curcumin-PLGA nanoparticles using a modified supercritical antisolvent technique. Industrial & Engineering Chemistry Research201453(15): 6569–6574

[7]

Ha E SChoo  G HBeak  I HKim  M S. Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical anti-solvent coprecipitation. Molecules (Basel, Switzerland)201419(12): 20325–20339

[8]

Zahran FCabañas  ACheda J A R Renuncio J A R Pando C. Dissolution rate enhancement of anti-inflammatory drug diflunisal by coprecipitation with a biocompaticle polymer using carbon dioxide as a supercritical fluid antisolvent. Journal of Supercritical Fluids201488: 56–65

[9]

Prosapio VDe Macro  IScognamiglio M Reverchon E. Folic acid-PVP nanostructured composite microparticles by supercritical antisolvent precipitation. Chemical Engineering Journal2015277: 286–294

[10]

Kurniawansyah FMammucari  RFoster N R. Inhalable curcumin formulations by supercritical technology. Powder Technology2015284: 289–298

[11]

Prosapio VDe Marco  IReverchon E. PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chemical Engineering Journal2016292: 264–275

[12]

Montes AWehner  LPereyra C Martínez De La Ossa E J. Generation of microparticles of ellagic acid by supercritical antisolvent process. Journal of Supercritical Fluids2016116: 101–110

[13]

Prosapio VReverchon  EDe Marco I. Formulation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. Journal of Supercritical Fluids2016118: 19–26

[14]

Montes AWehner  LPereyra C De La Ossa E J M. Mangiferin nanoparticles precipitation by supercritical antisolvent process. Journal of Supercritical Fluids2016112: 44–50

[15]

Xie MLi  YZao Z Chen ALi  JHu J Li GLi  Z. Solubility enhancement of curcumin via supercritical CO2 based silk fibroin carrier. Journal of Supercritical Fluids2015103: 1–9

[16]

Jia JSong  NGai Y Zhang L Zhao Y. Release-controlled curcumin proliposome produced by ultrasound-assisted supercritical antisolvent method. Journal of Supercritical Fluids2016113: 150–157

[17]

Pedro A SVilla  S DCaliceti  PDe Melo S A B V Albuquerque E C Bertucco A Salmaso S. Curcumin-loaded solid lipid particles by PGSS technology. Journal of Supercritical Fluids2016107: 534–541

[18]

Baldino LCardea  SReverchon E. Biodegradable membranes loaded with curcumin to be used as engineered independent devices in active packaging. Journal of the Taiwan Institute of Chemical Engineers201771: 518–526

[19]

Kawasaki SSue  KOokawara R Wakashima Y Suzuki A. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method. Journal of Oleo Science201059(10): 557–562

[20]

Patomchaiviwat VPaeratakul  OKulvanich P. Formation of inhalable rifampicin-polyL-lactide) microparticles by supercritical anti-solvent process. America Association of Pharmaceutical Scientists20089(4): 1119–1129

[21]

Reverchon EDe Marcro  IDella Porta G. Tailoring of nano-and micro-particle of some superconductor precursors by supercritical antisolvent precipitation. Journal of Supercritical Fluids200223(1): 81–87

[22]

De Marco IReverchon  E. Influence of pressure, temperature, and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization. Journal of Supercritical Fluids201158(2): 295–302

[23]

Anwar MAhmad  IWarsi M H Mohapatra S Ahmad N Akhter S Ali AAlmad  F J. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. European Journal of Pharmaceutics and Biopharmaceutics201596: 162–172

[24]

Li YYu  YWang H Zhao F. Effect of process parameters on the recrystallization and the size control of puerarin using the supercritical fluid antisolvent process. Asian Journal of Pharmaceutical Sciences201611(2): 281–291

[25]

Li WLiu  GLi L Wu J  YJiang Y. The effect of process parameters on co-precipitation of paclitaxel and Poly(L-lactic acid) by supercritical antisolvent. Chinese Journal of Chemical Engineering201220(4): 803–813

[26]

Miguel FMartín  AGamse T Cocero M J. Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters. Journal of Supercritical Fluids200636(3): 225–235

[27]

Su CLo  WLien L. Micronization of fluticasone propionate using supercritical antisolvent process. Chemical Engineering & Technology201134(4): 535–541

[28]

Careno SBoutin  OBadens E. Drug recrystallization using supercritical anti-solvent (SAS) process with impinging jets: Effect of process parameters. Journal of Crystal Growth2012342(1): 34–41

[29]

Kim MLee  SPark J Woo JHwang  S. Micronization of cilostazol using supercritical antisolvent (SAS) process: Effect of process parameters. Powder Technology2007177(2): 64–70

[30]

Reverchon E. Supercritical antisolvent precipitation of micro-and nano-particles. Journal of Supercritical Fluids199915(1): 1–21

[31]

Martín AMattea  FGutiérrez K Miguel F Cocero M J. Co-precipitation of carotenoids and bio-polymers with supercritical anti-solvent process. Journal of Supercritical Fluids200741(1): 138–147

[32]

Yen FWu  TTzeng C W Lin LLin  C. Curcumin nanoparticle improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antithepatoma activities.  Journal of Agriculture and Food Chemistry201058(12): 73–76-7382

[33]

Uzun I NSipahigil  ODinçer S. Coprecipitation of cefuroxime axetil-PVP composite microparticles by batch supercritical antisolvent process. Journal of Supercritical Fluids201155(3): 1059–1069

[34]

Perrut MJung  JLeboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: Part 1: Micronization of neat particles. International Journal of Pharmaceutics2005288(1): 3–10

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (607KB)

3097

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/