Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation

Yuxia Jiang , Donge Wang , Zhendong Pan , Huaijun Ma , Min Li , Jiahe Li , Anda Zheng , Guang Lv , Zhijian Tian

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 32 -42.

PDF (473KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 32 -42. DOI: 10.1007/s11705-017-1677-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation

Author information +
History +
PDF (473KB)

Abstract

Flower-like intercalated MoS2 nanomaterials have been successfully synthesized via a microemulsion-mediated hydrothermal (MMH) method, and characterized by X-ray diffraction, Raman spectroscopy, element analysis, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy in detail. Their catalytic performance for anthracene hydrogenation was evaluated using a slurry-bed batch reactor with an initial hydrogen pressure of 80 bar at 350 °C for 4 h. The intercalated MoS2 nanoflowers synthesized from Na2MoO4 (MoS2-S) and H2MoO4 (MoS2-A) as molybdenum precursors have diameters of about 150 and 50 nm, respectively. MoS2 nanosheets on MoS2-S and MoS2-A possess stacking layer numbers of 5–10 and 2–5, and slab lengths of about 15 and 10 nm, respectively. The interlayer distances of MoS2-S and MoS2-A are both enlarged from 0.62 nm to about 0.95 nm due to the intercalation of NH4+ and surfactant molecules. The MoS2 nanoflowers have high catalytic activities for anthracene hydrogenation. The selectivity for octahydroanthracene, a deeply hydrogenated product, over MoS2-A is 89.8%, which is 31.0 times higher than that over commercial bulk MoS2. Fully hydrogenated product (perhydroanthracene) was also detected over MoS2 nanoflowers with a selectivity of 3.7%. The enhanced hydrogenation activities of MoS2 nanoflowers can be ascribed to the high exposure of catalytic active sites, resulting from the smaller particle size, fewer stacking layer, shorter slab length and enlarged interlayer distance of MoS2 nanoflowers compared with commercial bulk MoS2. In addition, a possible growth mechanism of MoS2 nanoflowers synthesized via the MMH method was proposed.

Graphical abstract

Keywords

microemulsion / intercalated MoS2 / catalytic hydrogenation / active sites

Cite this article

Download citation ▾
Yuxia Jiang, Donge Wang, Zhendong Pan, Huaijun Ma, Min Li, Jiahe Li, Anda Zheng, Guang Lv, Zhijian Tian. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation. Front. Chem. Sci. Eng., 2018, 12(1): 32-42 DOI:10.1007/s11705-017-1677-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hershfinkel MGheber L AVolterra VHutchison J LMargulis LTenne R. Nested polyhedra of MX2 (M= W, Mo; X= S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. Journal of the American Chemical Society1994116(5): 1914–1917

[2]

Chhowalla MShin H SEda GLi L JLoh K PZhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry20135(4): 263–275

[3]

Bano SAhmad SWoo SSaleem F. Heavy oil hydroprocessing: Effect of nanostructured morphologies of MoS2 as catalyst. Reaction Kinetics, Mechanisms and Catalysis2015114(2): 473–487

[4]

Deng DNovoselov K SFu QZheng NTian ZBao X. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology201611(3): 218–230

[5]

Daage MChianelli R R. Structure-function relations in molybdenum sulfide catalysts—the rim-edge model. Journal of Catalysis1994149(2): 414–427

[6]

Zhang NLi HYu KZhu Z. Differently structured MoS2 for the hydrogen production application and a mechanism investigation. Journal of Alloys and Compounds2016685: 65–69

[7]

Iwata YAraki YHonna KMiki YSato KShimada H. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils. Catalysis Today200165(2): 335–341

[8]

Li ZHe JWang HWang BMa X. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. Frontiers of Chemical Science and Engineering20159(1): 33–39

[9]

Salvatore G AMünzenrieder NBarraud CPetti LZysset CBüthe LEnsslin KTröster G. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano20137(10): 8809–8815

[10]

Zheng JZhang HDong SLiu YTai Nai CSuk Shin HYoung Jeong HLiu BPing Loh K. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications20145: 2995

[11]

Nath MGovindaraj ARao C N R. Simple synthesis of MoS2 and WS2 nanotubes. Advanced Materials200113(4): 283–286

[12]

Lee Y HZhang X QZhang WChang M TLin C TChang K DYu Y CWang J T WChang C SLi L JLin T W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials201224(17): 2320–2325

[13]

Sheng BLiu JLi ZWang MZhu KQiu JWang J. Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Materials Letters2015144: 153–156

[14]

Liu MLi XXu ZLi BChen LShan N. Synthesis of chain-like MoS2 nanoparticles in W/O reverse microemulsion and application in photocatalysis. Chinese Science Bulletin201257(30): 3862–3866

[15]

Gong HZheng FLi ZLi YHu PGong YSong SZhan FZhen Q. Hydrothermal preparation of MoS2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochimica Acta2017227: 101–109

[16]

Ye LWu CGuo WXie Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties. Chemical Communications200645(45): 4738–4740

[17]

Lu XLin YDong HDai WChen XQu XZhang X. One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Scientific Reports20177: 42309

[18]

Akram HMateos-Pedrero CGallegos-Suárez EGuerrero-Ruíz AChafik TRodríguez-Ramos I. Effect of electrolytes nature and concentration on the morphology and structure of MoS2 nanomaterials prepared using one-pot solvothermal method. Applied Surface Science2014307(2): 319–326

[19]

Li MWang DLi JPan ZMa HJiang YTian ZLu A. Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation. Chinese Journal of Catalysis201738(3): 597–606

[20]

Yan YXia BGe XLiu ZWang JWang X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Applied Materials & Interfaces20135(24): 12794–12798

[21]

Chikan VKelley D F. Size-dependent spectroscopy of MoS2 nanoclusters. Journal of Physical Chemistry B2002106(15): 3794–3804

[22]

Yu HLiu YBrock S L. Synthesis of discrete and dispersible MoS2 nanocrystals. Inorganic Chemistry200847(5): 1428–1434

[23]

Xiong YXie YLi ZLi XZhang R. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres. Chemical Physics Letters2003382(1-2): 180–185

[24]

Marchand KTarret MLechaire JNormand LKasztelan SCseri T. Investigation of AOT-based microemulsions for the controlled synthesis of MoSx nanoparticles: An electron microscopy study. Colloids and Surfaces. A, Physicochemical and Engineering Aspects2003214(1): 239–248

[25]

Ganguli A KGanguly AVaidya S. Microemulsion-based synthesis of nanocrystalline materials. Chemical Society Reviews201039(2): 474–485

[26]

Wu MLong JHuang ALuo YFeng SXu R. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir199915(26): 8822–8825

[27]

Yang LLiu LXiao DZhu J. Preparation and characterization of ZnSe nanocrystals by a microemulsion-mediated method. Materials Letters201272: 113–115

[28]

Yin JLu XDong Q. The experiment and theory studies of silver substituting cadmium in CdS quantum dots. Journal of Alloys and Compounds2017695: 1301–1306

[29]

Gao M RChan M K YSun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications20156: 7493

[30]

Li JWang DMa HPan ZJiang YLi MTian Z. Ionic liquid assisted hydrothermal synthesis of hollow core/shell MoS2 microspheres. Materials Letters2015160: 550–554

[31]

Li MWang DLi JPan ZMa HJiang YTian Z. Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. RSC Advances20166(75): 71534–71542

[32]

Wu ZTang CZhou PLiu ZXu YWang DFang B. Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS2. Journal of Materials Chemistry. A, Materials for Energy and Sustainability20153(24): 13050–13056

[33]

Anto Jeffery ANethravathi CRajamathi M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M= Mo,W). Journal of Physical Chemistry C2014118(2): 1386–1396

[34]

Matusinovic ZShukla RManias EHogshead C GWilkie C A. Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polymer Degradation & Stability201297(12): 2481–2486

[35]

Frey G LTenne RMatthews M JDresselhaus M SDresselhaus G. Raman and resonance Raman investigation of MoS2 nanoparticles. Physical Review B: Condensed Matter and Materials Physics199960(4): 2883–2892

[36]

Wang ZMa LChen WHuang GChen DWang LLee J Y. Facile synthesis of MoS2/graphene composites: Effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances20133(44): 21675–21684

[37]

Ramakrishna Matte H S SGomathi AManna A KLate D JDatta RPati S KRao C N R. MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition201049(24): 4059–4062 doi:10.1002/anie.201000009

[38]

Koroteev V OBulusheva L GAsanov I PShlyakhova E VVyalikh D VOkotrub A V. Charge transfer in the MoS2/Carbon nanotube composite. Journal of Physical Chemistry C2011115(43): 21199–21204

[39]

Lee CYan HBrus L EHeinz T FHone JRyu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano20104(5): 2695–2700

[40]

Nogueira AZnaiguia RUzio DAfanasiev PBerhault G. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: Synthesis and HDS catalytic properties. Applied Catalysis A, General2012429–430: 92–105

[41]

Iwata YSato KYoneda TMiki YSugimoto YNishijima AShimada H. Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods. Catalysis Today199845(1-4): 353–359

[42]

Bellussi GRispoli GMolinari DLandoni APollesel PPanariti NMillini RMontanari E. The role of MoS2 nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates. Catalysis Science & Technology20133(1): 176–182

[43]

Zhou KJiang SBao CSong LWang BTang GHu YGui Z. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): Structural characteristics and markedly enhanced properties. RSC Advances20122(31): 11695–11703

[44]

Zhou KLiu JWang BZhang QShi YJiang SHu YGui Z. Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Materials Letters2014126: 159–161

[45]

Barzegar-Bafrooei HEbadzadeh TTazike M. A survey on dispersion mechanisms of multi-walled carbon nanotubes in an aqueous media by UV-Vis, raman spectroscopy, TGA, and FTIR. Journal of Dispersion Science and Technology201233(7): 955–959

[46]

Boyjoo YWang MPareek V KLiu JJaroniec M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chemical Society Reviews201645(21): 6013–6047

[47]

Yang TLing HLamonier J FJaroniec MHuang JMonteiro M JLiu J. A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Materials20168(2): e240

[48]

Pinilla J LPurón HTorres DSuelves IMillan M. Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: Effect of support functionalisation. Carbon201581: 574–586

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (473KB)

2457

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/