Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions

Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren

PDF(339 KB)
PDF(339 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 24-31. DOI: 10.1007/s11705-017-1669-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions

Author information +
History +

Abstract

We have successfully prepared a series of Pd-Ni/TiO2 catalysts by a one-step impregnation-reduction method. Among these catalysts with different compositions of Ni and Pd, the one with the Ni:Pd ratio of 2.95 showed the best activity. Small monodispersed Pd-Ni bimetallic nanoparticles were loaded on the surface of titanium oxide nanopowder as confirmed with TEM and EDS mapping. The XPS analysis demonstrated that Pd exists as 31% Pd(II) species and 69% Pd(0) species and all nickel is Ni(II). The prepared Pd-Ni/TiO2 exhibited enhanced catalytic activity compared to an equal amount of Pd/TiO2 for Suzuki-Miyaura reactions together with excellent applicability and reusability.

Graphical abstract

Keywords

Pd-Ni bimetallic nanoparticles / nanocatalysis / Suzuki-Miyaura reaction / titanium oxide

Cite this article

Download citation ▾
Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions. Front. Chem. Sci. Eng., 2018, 12(1): 24‒31 https://doi.org/10.1007/s11705-017-1669-4

References

[1]
Crane E A, Scheidt K A. Prins-type macrocyclizations as an efficient ring-closing strategy in natural product synthesis. Angewandte Chemie International Edition, 2010, 49(45): 8316–8326
CrossRef Google scholar
[2]
Dumas A, Spicer C D, Gao Z, Takehana T, Lin Y A, Yasukohchi T, Davis B G. Self-liganded Suzuki-Miyaura coupling for site-selective protein PEGylation. Angewandte Chemie International Edition, 2013, 52(14): 3916–3921
CrossRef Google scholar
[3]
Maluenda I, Navarro O. Recent developments in the Suzuki-Miyaura reaction: 2010‒2014. Molecules (Basel, Switzerland), 2015, 20(5): 7528–7557
CrossRef Google scholar
[4]
Miyaura N, Suzuki A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Chemical Communications, 1979, 19(19): 866–867
CrossRef Google scholar
[5]
Rossi R, Bellina F, Lessi M, Manzini C, Marianetti G A, Perego L. Recent applications of phosphane-based palladium catalysts in Suzuki-Miyaura reactions involved in total syntheses of natural products. Current Organic Chemistry, 2015, 19(14): 1302–1409
CrossRef Google scholar
[6]
Yamaguchi J, Yamaguchi A D, Itami K. C‒H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angewandte Chemie International Edition, 2012, 51(36): 8960–9009 doi:10.1002/anie.201201666
[7]
Yokoyama A, Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T. Chain-growth polymerization for the synthesis of polyfluorene via Suzuki-Miyaura coupling reaction from an externally added initiator unit. Journal of the American Chemical Society, 2007, 129(23): 7236–7237
CrossRef Google scholar
[8]
Pagliaro M, Pandarus V, Ciriminna R, Béland F, Demma Carà P. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. ChemCatChem, 2012, 4(4): 432–445
CrossRef Google scholar
[9]
Que Y, Feng C, Zhang S, Huang X. Stability and catalytic activity of PEG-b-PS-capped gold nanoparticles: A matter of PS chain length. Journal of Physical Chemistry C, 2015, 119(4): 1960–1970
CrossRef Google scholar
[10]
Chen J, Zhang Z, Bao Z, Su Y, Xing H, Yang Q, Ren Q. Functionalized metal-organic framework as a biomimetic heterogeneous catalyst for transfer hydrogenation of imines. ACS Applied Materials & Interfaces, 2017, 9(11): 9772–9777
CrossRef Google scholar
[11]
Chtchigrovsky M, Lin Y, Ouchaou K, Chaumontet M, Robitzer M, Quignard F, Taran F. Dramatic effect of the gelling cation on the catalytic performances of alginate-supported palladium nanoparticles for the Suzuki-Miyaura reaction. Chemistry of Materials, 2012, 24(8): 1505–1510
CrossRef Google scholar
[12]
Jiang B, Song S, Wang J, Xie Y, Chu W, Li H, Xu H, Tian C, Fu H. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C‒C coupling reactions. Nano Research, 2014, 7(9): 1280–1290
CrossRef Google scholar
[13]
Sun J, Fu Y, He G, Sun X, Wang X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental, 2015, 165: 661–667
CrossRef Google scholar
[14]
Zhang L, Feng C, Gao S, Wang Z, Wang C. Palladium nanoparticle supported on metal-organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction. Catalysis Communications, 2015, 61: 21–25
CrossRef Google scholar
[15]
Ohtaka A, Sansano J M, Nájera C, Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorós D. Palladium and bimetallic palladium-nickel nanoparticles supported on multiwalled carbon nanotubes: Application to carbon-carbon bond-forming reactions in water. ChemCatChem, 2015, 7(12): 1841–1847
CrossRef Google scholar
[16]
Song H, Zhu Q, Zheng X, Chen X. One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: An efficient recyclable catalyst for Suzuki coupling reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(19): 10368–10377
CrossRef Google scholar
[17]
Hu J, Yang Q, Yang L, Zhang Z, Su B, Bao Z, Ren Q, Xing H, Dai S. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene. ACS Catalysis, 2015, 5(11): 6724–6731
CrossRef Google scholar
[18]
Wu Y, Wang D, Zhao P, Niu Z, Peng Q, Li Y. Monodispersed Pd-Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Inorganic Chemistry, 2011, 50(6): 2046–2048
CrossRef Google scholar
[19]
Cai S, Wang D, Niu Z, Li Y. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chinese Journal of Catalysis, 2013, 34(11): 1964–1974
CrossRef Google scholar
[20]
Gu J, Zhang Y W, Tao F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chemical Society Reviews, 2012, 41(24): 8050–8065
CrossRef Google scholar
[21]
Chen T, Rodionov V O. Controllable catalysis with nanoparticles: Bimetallic alloy systems and surface adsorbates. ACS Catalysis, 2016, 6(6): 4025–4033
CrossRef Google scholar
[22]
Shaabani A, Mahyari M. PdCo bimetallic nanoparticles supported on PPI-grafted graphene as an efficient catalyst for Sonogashira reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(32): 9303–9311
CrossRef Google scholar
[23]
Nath Dhital R,  Kamonsatikul C, Somsook E, Sakurai H. Bimetallic gold-palladium alloy nanoclusters: An effective catalyst for Ullmann coupling of chloropyridines under ambient conditions. Catalysis Science & Technology, 2013, 3(11): 3030–3035
CrossRef Google scholar
[24]
Tan L, Wu X, Chen D, Liu H, Meng X, Tang F. Confining alloy or core-shell Au-Pd bimetallic nanocrystals in silica nanorattles for enhanced catalytic performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(35): 10382–10388
CrossRef Google scholar
[25]
Alonso A, Shafir A, Macanás J, Vallribera A, Muñoz M, Muraviev D N. Recyclable polymer-stabilized nanocatalysts with enhanced accessibility for reactants. Catalysis Today, 2012, 193(1): 200–206
CrossRef Google scholar
[26]
Han D, Bao Z, Xing H, Yang Y, Ren Q, Zhang Z. Fabrication of plasmonic Au-Pd alloy nanoparticles for photocatalytic Suzuki-Miyaura reactions under ambient conditions. Nanoscale, 2017, 9(18): 6026–6032
CrossRef Google scholar
[27]
Wilson D A, Wilson C J, Rosen B M, Percec V. Two-step, one-pot Ni-catalyzed neopentylglycolborylation and complementary Pd/Ni-catalyzed cross-coupling with aryl halides, mesylates, and tosylates. Organic Letters, 2008, 10(21): 4879–4882
CrossRef Google scholar
[28]
Son S U, Jang Y, Park J, Na H B, Park H M, Yun H J, Lee J, Hyeon T. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Journal of the American Chemical Society, 2004, 126(16): 5026–5027
CrossRef Google scholar
[29]
Heshmatpour F, Abazari R, Balalaie S. Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction. Tetrahedron, 2012, 68(14): 3001–3011
CrossRef Google scholar
[30]
Takenaka S, Shigeta Y, Tanabe E, Otsuka K. Methane decomposition into hydrogen and carbon Nanofibers over supported Pd-Ni catalysts: Characterization of the catalysts during the reaction. Journal of Physical Chemistry B, 2004, 108(23): 7656–7664
CrossRef Google scholar
[31]
Feng L, Chong H, Li P, Xiang J, Fu F, Yang S, Yu H, Sheng H, Zhu M. Pd-Ni alloy nanoparticles as effective catalysts for Miyaura-Heck coupling reactions. Journal of Physical Chemistry C, 2015, 119(21): 11511–11515
CrossRef Google scholar
[32]
Xiang J, Li P, Chong H, Feng L, Fu F, Wang Z, Zhang S, Zhu M. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Research, 2014, 7(9): 1337–1343
CrossRef Google scholar
[33]
Xia J, Fu Y, He G, Sun X, Wang X. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Applied Catalysis B: Environmental, 2017, 200: 39–46
CrossRef Google scholar
[34]
Metin Ö, Ho S F, Alp C, Can H, Mankin M N, Gültekin M S, Chi M, Sun S. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Research, 2013, 6(1): 10–18
CrossRef Google scholar
[35]
Kim M R, Choi S H. One-step synthesis of Pd-M/ZnO (M= Ag, Cu, and Ni) catalysts by irradiation and their use in hydrogenation and Suzuki reaction. Journal of Nanomaterials, 2009, 2009: e302919
[36]
Kim S J, Oh S D, Lee S, Choi S H. Radiolytic synthesis of Pd-M (M= Ag, Ni, and Cu)/C catalyst and their use in Suzuki-type and Heck-type reaction. Journal of Industrial and Engineering Chemistry, 2008, 14(4): 449–456
CrossRef Google scholar
[37]
Han F S. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chemical Society Reviews, 2013, 42(12): 5270–5298
CrossRef Google scholar

Acknowledgments

We are grateful for financial support from the National Key R&D Program of China (Grant No. 2016YFA0202900), the National Natural Science Foundation of China (Grant Nos. 21376212 and 21436010).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-017-1669-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(339 KB)

Accesses

Citations

Detail

Sections
Recommended

/