Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions

Dongxu Han , Zhiguo Zhang , Zongbi Bao , Huabin Xing , Qilong Ren

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 24 -31.

PDF (339KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 24 -31. DOI: 10.1007/s11705-017-1669-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions

Author information +
History +
PDF (339KB)

Abstract

We have successfully prepared a series of Pd-Ni/TiO2 catalysts by a one-step impregnation-reduction method. Among these catalysts with different compositions of Ni and Pd, the one with the Ni:Pd ratio of 2.95 showed the best activity. Small monodispersed Pd-Ni bimetallic nanoparticles were loaded on the surface of titanium oxide nanopowder as confirmed with TEM and EDS mapping. The XPS analysis demonstrated that Pd exists as 31% Pd(II) species and 69% Pd(0) species and all nickel is Ni(II). The prepared Pd-Ni/TiO2 exhibited enhanced catalytic activity compared to an equal amount of Pd/TiO2 for Suzuki-Miyaura reactions together with excellent applicability and reusability.

Graphical abstract

Keywords

Pd-Ni bimetallic nanoparticles / nanocatalysis / Suzuki-Miyaura reaction / titanium oxide

Cite this article

Download citation ▾
Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions. Front. Chem. Sci. Eng., 2018, 12(1): 24-31 DOI:10.1007/s11705-017-1669-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Crane E AScheidt K A. Prins-type macrocyclizations as an efficient ring-closing strategy in natural product synthesis. Angewandte Chemie International Edition201049(45): 8316–8326

[2]

Dumas ASpicer C DGao ZTakehana TLin Y AYasukohchi TDavis B G. Self-liganded Suzuki-Miyaura coupling for site-selective protein PEGylation. Angewandte Chemie International Edition201352(14): 3916–3921

[3]

Maluenda INavarro O. Recent developments in the Suzuki-Miyaura reaction: 2010‒2014. Molecules (Basel, Switzerland)201520(5): 7528–7557

[4]

Miyaura NSuzuki A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Chemical Communications197919(19): 866–867

[5]

Rossi RBellina FLessi MManzini CMarianetti G APerego L. Recent applications of phosphane-based palladium catalysts in Suzuki-Miyaura reactions involved in total syntheses of natural products. Current Organic Chemistry201519(14): 1302–1409

[6]

Yamaguchi JYamaguchi A DItami K. C‒H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angewandte Chemie International Edition201251(36): 8960–9009 doi:10.1002/anie.201201666

[7]

Yokoyama ASuzuki HKubota YOhuchi KHigashimura HYokozawa T. Chain-growth polymerization for the synthesis of polyfluorene via Suzuki-Miyaura coupling reaction from an externally added initiator unit. Journal of the American Chemical Society2007129(23): 7236–7237

[8]

Pagliaro MPandarus VCiriminna RBéland FDemma Carà P. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. ChemCatChem20124(4): 432–445

[9]

Que YFeng CZhang SHuang X. Stability and catalytic activity of PEG-b-PS-capped gold nanoparticles: A matter of PS chain length. Journal of Physical Chemistry C2015119(4): 1960–1970

[10]

Chen JZhang ZBao ZSu YXing HYang QRen Q. Functionalized metal-organic framework as a biomimetic heterogeneous catalyst for transfer hydrogenation of imines. ACS Applied Materials & Interfaces20179(11): 9772–9777

[11]

Chtchigrovsky MLin YOuchaou KChaumontet MRobitzer MQuignard FTaran F. Dramatic effect of the gelling cation on the catalytic performances of alginate-supported palladium nanoparticles for the Suzuki-Miyaura reaction. Chemistry of Materials201224(8): 1505–1510

[12]

Jiang BSong SWang JXie YChu WLi HXu HTian CFu H. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C‒C coupling reactions. Nano Research20147(9): 1280–1290

[13]

Sun JFu YHe GSun XWang X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental2015165: 661–667

[14]

Zhang LFeng CGao SWang ZWang C. Palladium nanoparticle supported on metal-organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction. Catalysis Communications201561: 21–25

[15]

Ohtaka ASansano J MNájera CMiguel-García IBerenguer-Murcia ÁCazorla-Amorós D. Palladium and bimetallic palladium-nickel nanoparticles supported on multiwalled carbon nanotubes: Application to carbon-carbon bond-forming reactions in water. ChemCatChem20157(12): 1841–1847

[16]

Song HZhu QZheng XChen X. One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: An efficient recyclable catalyst for Suzuki coupling reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability20153(19): 10368–10377

[17]

Hu JYang QYang LZhang ZSu BBao ZRen QXing HDai S. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene. ACS Catalysis20155(11): 6724–6731

[18]

Wu YWang DZhao PNiu ZPeng QLi Y. Monodispersed Pd-Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Inorganic Chemistry201150(6): 2046–2048

[19]

Cai SWang DNiu ZLi Y. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chinese Journal of Catalysis201334(11): 1964–1974

[20]

Gu JZhang Y WTao F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chemical Society Reviews201241(24): 8050–8065

[21]

Chen TRodionov V O. Controllable catalysis with nanoparticles: Bimetallic alloy systems and surface adsorbates. ACS Catalysis20166(6): 4025–4033

[22]

Shaabani AMahyari M. PdCo bimetallic nanoparticles supported on PPI-grafted graphene as an efficient catalyst for Sonogashira reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability20131(32): 9303–9311

[23]

Nath Dhital R,  Kamonsatikul C, Somsook ESakurai H. Bimetallic gold-palladium alloy nanoclusters: An effective catalyst for Ullmann coupling of chloropyridines under ambient conditions. Catalysis Science & Technology20133(11): 3030–3035

[24]

Tan LWu XChen DLiu HMeng XTang F. Confining alloy or core-shell Au-Pd bimetallic nanocrystals in silica nanorattles for enhanced catalytic performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability20131(35): 10382–10388

[25]

Alonso AShafir AMacanás JVallribera AMuñoz MMuraviev D N. Recyclable polymer-stabilized nanocatalysts with enhanced accessibility for reactants. Catalysis Today2012193(1): 200–206

[26]

Han DBao ZXing HYang YRen QZhang Z. Fabrication of plasmonic Au-Pd alloy nanoparticles for photocatalytic Suzuki-Miyaura reactions under ambient conditions. Nanoscale20179(18): 6026–6032

[27]

Wilson D AWilson C JRosen B MPercec V. Two-step, one-pot Ni-catalyzed neopentylglycolborylation and complementary Pd/Ni-catalyzed cross-coupling with aryl halides, mesylates, and tosylates. Organic Letters200810(21): 4879–4882

[28]

Son S UJang YPark JNa H BPark H MYun H JLee JHyeon T. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Journal of the American Chemical Society2004126(16): 5026–5027

[29]

Heshmatpour FAbazari RBalalaie S. Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction. Tetrahedron201268(14): 3001–3011

[30]

Takenaka SShigeta YTanabe EOtsuka K. Methane decomposition into hydrogen and carbon Nanofibers over supported Pd-Ni catalysts: Characterization of the catalysts during the reaction. Journal of Physical Chemistry B2004108(23): 7656–7664

[31]

Feng LChong HLi PXiang JFu FYang SYu HSheng HZhu M. Pd-Ni alloy nanoparticles as effective catalysts for Miyaura-Heck coupling reactions. Journal of Physical Chemistry C2015119(21): 11511–11515

[32]

Xiang JLi PChong HFeng LFu FWang ZZhang SZhu M. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Research20147(9): 1337–1343

[33]

Xia JFu YHe GSun XWang X. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Applied Catalysis B: Environmental2017200: 39–46

[34]

Metin ÖHo S FAlp CCan HMankin M NGültekin M SChi MSun S. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Research20136(1): 10–18

[35]

Kim M RChoi S H. One-step synthesis of Pd-M/ZnO (M= Ag, Cu, and Ni) catalysts by irradiation and their use in hydrogenation and Suzuki reaction. Journal of Nanomaterials20092009: e302919

[36]

Kim S JOh S DLee SChoi S H. Radiolytic synthesis of Pd-M (M= Ag, Ni, and Cu)/C catalyst and their use in Suzuki-type and Heck-type reaction. Journal of Industrial and Engineering Chemistry200814(4): 449–456

[37]

Han F S. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chemical Society Reviews201342(12): 5270–5298

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (339KB)

Supplementary files

FCE-17014-OF-HD_suppl_1

3059

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/