Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method

Tianjie Liu , Hao Fan , Yanxia Xu , Xingfu Song , Jianguo Yu

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 545 -553.

PDF (749KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 545 -553. DOI: 10.1007/s11705-017-1665-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method

Author information +
History +
PDF (749KB)

Abstract

The effects of Na+, Mg2+, Al3+ and Fe3+ ion concentrations on the crystal morphology of calcium sulfate hemihydrate whiskers formed via a hydrothermal method have been studied. In the presence of Al3+ concentrations higher than 1×103 mol/L the whiskers were significantly shorter and thicker and the presence of Mg2+ and Fe3+ resulted in shorter whiskers. The presence of Na+ did not affect the morphology of the whiskers. Through elemental analysis, it was determined that Mg2+ and Al3+ were selectively adsorbed on the surfaces of the crystals, whereas Fe3+ underwent a hydrolysis reaction to form a brown precipitate which decreased the ion concentration in the solution. These results indicate that in raw materials used for the industrial preparation of calcium sulfate whiskers, Al3+ and Fe3+ should be removed and the Mg2+ concentration should be less than 8 × 103 mol/L in order to obtain pure whiskers with high aspect ratios.

Graphical abstract

Keywords

metal ions / morphology / calcium sulfate hemihydrate whiskers / hydrothermal method / selective adsorption

Cite this article

Download citation ▾
Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method. Front. Chem. Sci. Eng., 2017, 11(4): 545-553 DOI:10.1007/s11705-017-1665-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang HMu  BRen J Jian LZhang  JYang S . Mechanical and tribological behaviors of PA66/PVDF blends filled with calcium sulphate whiskers. Polymer Composites200930(9): 1326–1332

[2]

Wang JYang  KLu S . Preparation and characteristic of novel silicone rubber composites based on organophilic calcium sulfate whisker. High Performance Polymers201123(2): 141–150

[3]

Zhang YWang  GMiao M Shi L. Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technology2015271: 1–6

[4]

Yuan WCui  JCai Y Xu S. A novel surface modification for calcium sulfate whisker used for reinforcement of poly (vinyl chloride). Journal of Polymer Research201522(9): 173

[5]

Luo K BLi  H PTan  Y X. Study on the preparation of calcium sulfate whisker by hydrothermal method. Advanced Materials Research2013602: 1369–1372

[6]

He HDong  FHe P Xu L. Effect of glycerol on the preparation of phosphogypsum-based CaSO4·0.5H2O whiskers. Journal of Materials Science201449(5): 1957–1963

[7]

Zhao WWu  YXu J Gao C. Effect of ethylene glycol on hydrothermal formation of calcium sulfate hemihydrate whiskers with high aspect ratios. RSC Advances20155(62): 50544–50548

[8]

Mao XSong  XLu G Sun YXu  YYu J . Control of crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions by additives: Experimental and molecular dynamics simulation studies. Industrial & Engineering Chemistry Research201554(17): 4781–4787

[9]

Xu A YLi  H PLuo  K BXiang  L. Formation of calcium sulfate whiskers from CaCO3-bearing desulfurization gypsum. Research on Chemical Intermediates201137(2): 449–455

[10]

Wang XJin  BYang L Zhu X. Effect of CuCl2 on hydrothermal crystallization of calcium sulfate whiskers prepared from FGD gypsum. Crystal Research and Technology201550(8): 633–640

[11]

Wang YLi  YYuan A Yuan BLei  XMa Q Han JWang  J. Preparation of calcium sulfate whiskers by carbide slag through hydrothermal method. Crystal Research and Technology201449(10): 800–807

[12]

Yang LWu  ZGuan B Fu HYe  Q. Growth rate of a-calcium sulfate hemihydrate in K-Ca-Mg-Cl-H2O systems at elevated temperature. Journal of Crystal Growth2009311(20): 4518–4524

[13]

Guan BYang  LWu Z . Effect of Mg2+ ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions. Industrial & Engineering Chemistry Research201049(12): 5569–5574

[14]

Li ZDemopoulos  G P. Effect of NaCl, MgCl2, FeCl2, FeCl3, and AlCl3 on solubility of CaSO4 phases in aqueous HCl or HCl+CaCl2 solutions at 298 to 353 K. Journal of Chemical & Engineering Data200651(2): 569–576

[15]

Song XSun  SZhang D Wang JYu  J. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization. Frontiers of Chemical Science and Engineering20115(4): 416–421

[16]

Li FLiu  JYang G Pan ZNi  XXu H Huang Q . Effect of pH and succinic acid on the morphology of α-calcium sulfate hemihydrate synthesized by a salt solution method. Journal of Crystal Growth2013374: 31–36

[17]

Song XTong  KSun S Sun ZYu  J. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer. Frontiers of Chemical Science and Engineering20137(2): 130–138

[18]

Wang XYang  LZhu X Yang J. Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4-NaCl-H2O system. Particuology201417(6): 42–48

[19]

Hou SWang  JWang X Chen HXiang  L. Effect of Mg2+ on Hydrothermal Formation of α-CaSO4·0.5H2O Whiskers with High Aspect Ratios. Langmuir201430(32): 9804–9810

[20]

Xin YHou  S CXiang  LYu Y . Adsorption and substitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT study. Applied Surface Science2015357: 1552–1557

[21]

Feldmann TDemopoulos  G P. Influence of impurities on crystallization kinetics of calcium sulfate dihydrate and hemihydrate in strong HCl-CaCl2 solutions. Industrial & Engineering Chemistry Research201352(19): 6540–6549

[22]

Mao XSong  XLu G Sun YXu  YYu J . Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions. Industrial & Engineering Chemistry Research201453(45): 17625–17635

[23]

Miao MFeng  XWang G Cao SShi  WShi L . Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis. Particuology201519(2): 53–59

[24]

Zhao WGao  CZhang G Xu JWang  CWu Y . Controlling the morphology of calcium sulfate hemihydrate using aluminum chloride as a habit modifier. New Journal of Chemistry201640(4): 3104–3108

[25]

Rashad M MMahmoud  M H HIbrahim  I AAbdel-Aal  E A. Crystallization of calcium sulfate dihydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions. Journal of Crystal Growth2004267(1): 372–379

[26]

Kruger AFocke  W WKwela  ZFowles R . Effect of ionic impurities on the crystallization of gypsum in wet-process phosphoric acid. Industrial & Engineering Chemistry Research200140(5): 1364–1369

[27]

 PFei  DDang Y . Effects of calcium monohydrogenphosphate on the morphology of calcium sulfate whisker by hydrothermal synthesis. Canadian Journal of Chemical Engineering201492(10): 1709–1713

[28]

Guan BYang  LWu Z Shen ZMa  XYe Q . Preparation of α-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions. Fuel200988(7): 1286–1293

[29]

Singh N BMiddendorf  B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials200753(1): 57–77

[30]

Dumazer GNarayan  VSmith A Lemarchand A A . Modeling gypsum crystallization on a submicrometric scale. Journal of Physical Chemistry C2009113(4): 1189–1195

[31]

Seyama HSoma  M. X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases198480(1): 237–248

[32]

Arata KHino  M. Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina. Applied Catalysis199059(1): 197–204

[33]

Bourcier W LKnauss  K GJackson  K J. Aluminum hydrolysis constants to 250 °C from boehmite solubility measurements. Geochimica et Cosmochimica Acta199357(4): 747–762

[34]

Bottero J YCases  J MFiessinger  FPoirier J E . Studies of hydrolyzed aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous solutions. Journal of Physical Chemistry198084(22): 2933–2939

[35]

Subrt JBohácek  JStengl V Grygar T Bezdicka P . Uniform particles with a large surface area formed by hydrolysis of Fe2(SO4)3 with urea. Materials Research Bulletin199934(6): 905–914

[36]

Musić SOrehovec  ZPopović S Czakó-Nagy I . Structural properties of precipitates formed by hydrolysis of Fe3+ ions in Fe2(SO4)3 solutions. Journal of Materials Science199429(8): 1991–1998

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (749KB)

3466

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/